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Abstract: Let G be a finite simple graph on the vertex set V (G) and let ind-match(G), min-match(G) and
match(G) denote the induced matching number, the minimum matching number and the match-
ing number of G, respectively. It is known that the inequalities ind-match(G) ≤ min-match(G) ≤
match(G) ≤ 2min-match(G) and match(G) ≤ ⌊|V (G)|/2⌋ hold in general. In the present pa-
per, we determine the possible tuples (p, q, r, n) with ind-match(G) = p, min-match(G) = q,
match(G) = r and |V (G)| = n arising from connected simple graphs. As an application of this
result, we also determine the possible tuples (p′, q, r, n) with reg(G) = p′, min-match(G) = q,
match(G) = r and |V (G)| = n arising from connected simple graphs, where I(G) is the edge ideal
of G and reg(G) = reg(K[V (G)]/I(G)) is the Castelnuovo–Mumford regularity of the quotient ring
K[V (G)]/I(G).
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1. Introduction

Let G = (V (G), E(G)) be a finite simple graph on the vertex set V (G) with the edge set E(G). The
main topic of this paper is graph-theoretical invariants related to matching.

• A subset M = {e1, . . . , es} ⊂ E(G) is said to be a matching of G if ei ∩ ej = ∅ for all 1 ≤ i < j ≤ s.
For a matching M , we write V (M) = {v : v ∈ e for some e ∈ M}. A perfect matching M is a
matching of G with V (M) = V (G).
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• A matching of M of G is maximal if M ∪{e} cannot be a matching of G for all e ∈ E(G)\M . Note
that a matching M is maximal if and only if V (G) \ V (M) is an independent set of G.

• A matching M = {e1, . . . , es} ⊂ E(G) of G is said to be an induced matching if, for all 1 ≤ i < j ≤ s,
there is no edge e ∈ E(G) with e ∩ ei ̸= ∅ and e ∩ ej ̸= ∅.

• The matching number match(G), the minimum matching number min-match(G) and the induced
matching number ind-match(G) of G are defined as follows respectively:

match(G) = max{|M | : M is a matching of G};
min-match(G) = min{|M | : M is a maximal matching of G};
ind-match(G) = max{|M | : M is an induced matching of G}.

Hall’s marriage theorem [16] says that, for any bipartite graph G on the bipartition V (G) = X ∪ Y
with |X| ≤ |Y |, match(G) = |X| holds if and only if |NG(S)| ≥ |S| for all S ⊂ X, where NG(S) =⋃

v∈S NG(v) and NG(v) = {w ∈ V (G) : {v, w} ∈ E(G)}. There are many previous studies for match(G),
min-match(G) and ind-match(G), see [1–3, 9, 12, 31, 34]. To explain our motivation, we focus on two
known results described below.

First, in [18], it is proven that the inequalities

ind-match(G) ≤ min-match(G) ≤ match(G) ≤ 2min-match(G) (1)

hold for all simple graph G and a classification of connected simple graphs G satisfying ind-match(G) =
min-match(G) = match(G) is given ([4, Theorem 1], [17, Remark 0.1]) and such graphs are studied in
[17, 19, 21, 22, 32, 36]. A classification of connected simple graphs G with ind-match(G) = min-match(G)
is also given in [18].

Second, by definition of a matching, the equality

match(G) ≤ ⌊|V (G)|/2⌋ (2)

holds and some classes of graphs G with match(G) = ⌊|V (G)|/2⌋ are given (see [5, 13, 27, 35]).

From (1) and (2), it is natural to ask the following question:

Question A: Is there any connected simple graph G = G(p, q, r, n) such that

ind-match(G) = p,min-match = q,match(G) = r and |V (G)| = n

for all integers p, q, r, n with 1 ≤ p ≤ q ≤ r ≤ 2q and r ≤ ⌊n/2⌋ ?

As a previous study related to Question A, a connected simple graph G = G(p, q, r) such that
ind-match(G) = p,min-match(G) = q and match(G) = r was constructed for all integers p, q, r with
1 ≤ p ≤ q ≤ r ≤ 2q (see [18, Theorem 2.3]). Since the graph G constructed in the proof of [18, Theorem
2.3] satisfies |V (G)| = 2match(G)+ind-match(G)−1, for example, we can see that there exists a connected
simple graph G = G(2, 3, 4, 9) such that ind-match(G) = 2,min-match(G) = 3,match(G) = 4 and
|V (G)| = 9 by virtue of [18, Theorem 2.3]. However, there is a connected simple graph G = G(2, 3, 4, 8)
such that ind-match(G) = 2,min-match(G) = 3,match(G) = 4 and |V (G)| = 8; see Figure 1. This graph
says that it is necessary to construct new families of connected simple graphs in order to solve Question
A.

Based on the above, we state main results of the present paper. As the first result is, we determine
the possible tuples

(ind-match(G),min-match(G),match(G), |V (G)|)

arising from connected simple graphs.
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Figure 1. A connected graph G = G(2, 3, 4, 8) with ind-match(G) = 2, min-match(G) = 3,
match(G) = 4 and |V (G)| = 8.

Theorem 1.1. (see Theorem 3.1) Let n ≥ 2 be an integer and set

Graphind-match,min-match,match(n)

=

{
(p, q, r) ∈ N3

∣∣∣∣ There exists a connected simple graph G with |V (G)| = n
and ind-match(G) = p, min-match(G) = q, match(G) = r

}
.

Then we have the following:

(1) If n is odd, then

Graphind-match,min-match,match(n)

=

{
(p, q, r) ∈ N3

∣∣∣∣ 1 ≤ p ≤ q ≤ r ≤ 2q and r ≤ n− 1

2

}
.

(2) If n is even, then

Graphind-match,min-match,match(n)

=
{
(1, q, r) ∈ N3

∣∣∣ 1 ≤ q ≤ r ≤ 2q and r ≤ n

2

}
∪

{
(p, q, r) ∈ N3

∣∣∣ 2 ≤ p ≤ q ≤ r ≤ 2q, r ≤ n

2
and (q, r) ̸=

(n
2
,
n

2

)}
.

Note that this theorem gives a complete answer for Question A.

The second main result is related to the invariants of edge ideals. Let G be a finite simple graph on the
vertex set V (G) =

{
x1, . . . , x|V (G)|

}
and E(G) the set of edges of G. Let K[V (G)] = K

[
x1, . . . , x|V (G)|

]
be the polynomial ring in |V (G)| variables over a field K. The edge ideal of G, denoted by I(G), is the
ideal of K[V (G)] generated by quadratic monomials xixj associated with {xi, xj} ∈ E(G). Among the
current trends in combinatorial commutative algebra, the edge ideal is one of the main topic and has
been studied extensively by many researchers, see [6–8, 15, 26, 28, 29, 33, 37, 38].

Let reg(G) = reg(K[V (G)]/I(G)) denote the Castelnuovo–Mumford regularity (regularity for short,
see [30, Section 18]) of the quotient ring K[V (G)]/I(G). It is known that

ind-match(G) ≤ reg(G) ≤ min-match(G)

holds for all simple graph G (the lower bound was given by Katzman [25] and the upper bound was given
by Woodroofe [38]). Moreover, Hà–Van Tuyl proved that ind-match(G) = reg(G) holds if G is a chordal
graph ([15, Corollary 6.9]). By virtue of this result together with Theorem 1.1, we also determine the
possible tuples

(reg(G),min-match(G),match(G), |V (G)|)

arising from connected simple graphs. The second main result is as follows.
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Theorem 1.2. (see Theorem 4.1) Let n ≥ 2 be an integer and set

Graphreg,min-match,match(n)

=

{
(p′, q, r) ∈ N3

∣∣∣∣ There exists a connected simple graph G with |V (G)| = n
and reg(G) = p′, min-match(G) = q, match(G) = r

}
.

Then one has

Graphreg,min-match,match(n) = Graphind-match,min-match,match(n).

Our paper is organized as follows. In Section 2, we prepare some lemmas and propositions in order
to prove main results. In Section 3, we give a proof of Theorem 1.1. In Section 4, we introduce previous
studies related to Theorem 1.2 and give a proof.

2. Preparation

In this section, we prepare some lemmas and propositions in order to prove our main results.

2.1. Known results

In this subsection, we present known results related to our study. First, we recall two important
inequalities.

Proposition 2.1. Let G be a finite simple graph on the vertex set V (G). Then

(1) ind-match(G) ≤ min-match(G) ≤ match(G) ≤ 2min-match(G).

(2) match(G) ≤ ⌊|V (G)|/2⌋.

Proof. (1) : See [18, Proposition 2.1 and Remark 3.2].
(2) : Let M be a matching of G with |M | = match(G). Then |V (G)| ≥ |V (M)| = 2match(G) by the
definition of matching. Hence we have match(G) ≤ ⌊|V (G)|/2⌋.

Next, we recall the definition of the S-suspension introduced in [20]. A subset S ⊂ V (G) is said to
be an independent set of G if {u, v} ̸∈ E(G) for all u, v ∈ S. Note that the empty set ∅ is an independent
set of G. For an independent set S of G, we define the graph GS as follows:

• V (GS) = V (G) ∪ {w}, where w is a new vertex.

• E(GS) = E(G) ∪ {{v, w} : v ̸∈ S}.

We call GS the S-suspension of G.

Lemma 2.2 ([20, Lemma 1.5]). Let G be a finite simple graph on the vertex set V (G). Suppose that G
has no isolated vertices. Let S ⊂ V (G) be an independent set of G. Then ind-match(GS) = ind-match(G)
holds.

To end this subsection, we recall a classification of connected simple graphs G with min-match(G) =
|V (G)|/2 given by Arumugam–Velammal.

Proposition 2.3 ([2, Theorem 2.1]). Let n ≥ 2 be an even integer and let G = (V (G), E(G)) be
a connected simple graph with |V (G)| = n. Assume that min-match(G) = n/2. Then G is either
Kn or Kn/2,n/2. In particular, ind-match(G) = 1 and there is no connected simple graph G with
(ind-match(G),min-match(G),match(G)) = (p, n/2, n/2) and |V (G)| = n for all p ≥ 2.
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2.2. Induced subgraph

Let W be a subset of V (G). We define the induced subgraph GW of G on W as follows:

• V (GW ) = W .

• E(GW ) = {{u, v} ∈ E(G) | u, v ∈ W}.

For a vertex v ∈ V (G), we denote GV (G)\{v} by G \ v.

Proposition 2.4. Let G be a finite simple graph on the vertex set V (G) and v ∈ V (G). Then

(1) ind-match(G \ v) ≤ ind-match(G).

(2) min-match(G \ v) ≤ min-match(G).

(3) match(G \ v) ≤ match(G).

Proof. (1), (3) : it is easy to prove since induced matchings (resp. matchings) of G \ {v} are induced
matching (resp. matching) of G.
(2) : Let M ⊂ E(G) be a maximal matching with |M | = min-match(G). Note that V (G) \ V (M) is an
independent set of G.

• Assume that v ∈ V (G) \ V (M). Then {V (G) \ V (M)} \ {v} is an independent set of G \ v. Hence
M is a maximal matching of G \ v since V (G \ v) \ V (M) = {V (G) \ V (M)} \ {v}. Thus, we have
min-match(G \ v) ≤ |M | = min-match(G).

• Assume that v ̸∈ V (G) \ V (M). Then v ∈ V (M) and there exists an edge {v, w} ∈ M .

– Assume that there exists a vertex w′ ∈ V (G) \ V (M) such that {w,w′} ∈ E(G). Then
{V (G) \ V (M)} \ {w′} is an independent set of G \ v. Now we put M1 = (M \ {{v, w}}) ∪
{{w,w′}}. Since V (G \ v) \ V (M1) = {V (G) \ V (M)} \ {w′}, it follows that M1 is a maximal
matching of G \ v. Hence we have min-match(G \ v) ≤ |M1| = |M | = min-match(G).

– Assume that {w,w′′} ̸∈ E(G) for all w′′ ∈ V (G) \ V (M). Then {V (G) \ V (M)} ∪ {w} is an
independent set of G \ v. Put M2 = M \ {{v, w}}. Then M2 is a maximal matching of G \ v
since V (G \ v) \ V (M2) = {V (G) \ V (M)} ∪ {w}. Hence one has min-match(G \ v) ≤ |M2| =
|M | − 1 < min-match(G).

Therefore we have the desired conclusion.

As a corollary of Proposition 2.4, one has

Corollary 2.5. Let G be a finite simple graph on the vertex set V (G) and let W ⊂ V (G) be a subset.
Then one has

(1) ind-match(GW ) ≤ ind-match(G).

(2) min-match(GW ) ≤ min-match(G).

(3) match(GW ) ≤ match(G).

Lemma 2.6. Let G be a finite disconnected simple graph and G1, . . . , Gs (s ≥ 2) the connected compo-
nents of G. Then we have

(1) ind-match(G) =

s∑
i=1

ind-match(Gi).
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(2) min-match(G) =

s∑
i=1

min-match(Gi).

(3) match(G) =

s∑
i=1

match(Gi).

Proof. It is enough to show the case s = 2.
(1) : For 1 ≤ i ≤ 2, let Mi ⊂ E(Gi) be an induced matching of Gi with |Mi| = ind-match(Gi). Since
M1 ∪M2 is an induced matching of G and M1 ∩M2 = ∅, one has

ind-match(G1) + ind-match(G2) = |M1|+ |M2| = |M1| ∪ |M2| ≤ ind-match(G).

Next, we show the opposite inequality. Let M be an induced matching of G with |M | = ind-match(G).
Since each e ∈ M is an edge of G1 or G2 and E(G1) ∩ E(G2) = ∅, there exist M1 ⊂ E(G1) and
M2 ⊂ E(G2) such that M1 ∪ M2 = M and M1 ∩ M2 = ∅. Note that M1 (resp. M2) is an induced
matching of G1 (resp. G2). Hence it follows that |Mi| ≤ ind-match(Gi) for i = 1, 2. Thus one has

ind-match(G) = |M | = |M1 ∪M2| = |M1|+ |M2| ≤ ind-match(G1) + ind-match(G2).

Therefore we have the desired conclusion.
(2) : Let M ′

i ⊂ E(Gi) be a maximal matching of Gi with |M ′
i | = min-match(Gi) for i = 1, 2. Then

M ′
1 ∩M ′

2 = ∅ and V (Gi) \V (M ′
i) is an independent set of Gi for i = 1, 2. Since G1 and G2 are connected

components of G, it follows that {V (G1) \V (M ′
1)}∪{V (G2) \V (M ′

2)} is an independent set of G. Hence
M ′

1 ∪M ′
2 is a maximal matching of G since V (G) \ V (M ′

1 ∪M ′
2) = {V (G1) \ V (M ′

1)} ∪ {V (G2) \ V (M ′
2)}

. Thus we have

min-match(G1) + min-match(G2) = |M ′
1|+ |M ′

2| = |M ′
1 ∪M ′

2| ≥ min-match(G).

Next, we show the opposite inequality. Let M ′ be a maximal matching of G with |M ′| = min-match(G).
Since each e ∈ M ′ is an edge of G1 or G2 and E(G1) ∩ E(G2) = ∅, there exist M ′

1 ⊂ E(G1) and
M ′

2 ⊂ E(G2) such that M ′ = M ′
1 ∪M ′

2 and M ′
1 ∩M ′

2 = ∅. Note that M ′
i is a matching of Gi for i = 1, 2.

Assume that M ′
1 is not maximal. Then there exists e′ ∈ E(G1) \M ′

1 such that M ′
1 ∪ {e′} is a matching

of G1. However this is a contradiction because M ′ ∪ {e′} is a matching of G in this situation. Hence we
have M ′

1 is a maximal matching of G1. Similarly, we also have M ′
2 is a maximal matching of G2. Thus

it follows that

min-match(G1) + min-match(G2) ≤ |M ′
1|+ |M ′

2| = |M ′
1 ∪M ′

2| = min-match(G).

Therefore we have the desired conclusion.
(3) : We can prove this by replacing “an induced matching" with “a matching" and “ind-match" with
“match" in the proof of (1).

Lemma 2.7. Let G = (V (G), E(G)) be a finite simple graph. Assume that there exist two edges
{u,w}, {v, w} ∈ E(G) such that deg(u) = deg(v) = 1. Then

(1) ind-match(G \ v) = ind-match(G).

(2) min-match(G \ v) = min-match(G).

(3) match(G \ v) = match(G).

Proof. By virtue of Corollary 2.5, it is enough to show “ ≥ ” since G \ v is an induced subgraph of G.
(1) : Let M be an induced matching of G with |M | = ind-match(G).

• Assume that {v, w} ̸∈ M . Then M is also an induced matching of G\v. Hence one has ind-match(G\
v) ≥ |M | = ind-match(G).
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• Assume that {v, w} ∈ M . Then (M \ {v, w}) \ {u,w} is an induced matching of G \ v. Hence one
has ind-match(G \ v) ≥ | (M \ {v, w}) \ {u,w}| = |M | = ind-match(G).

(2) : Let M ′ be a maximal matching of G \ v with M ′ = min-match(G \ v). If w ̸∈ V (M ′), then
u ̸∈ V (M ′) since u is only adjacent to w. Hence M ′ ∪ {u,w} is a matching of G \ v, but this contradicts
the maximality of M ′. Thus w ∈ V (M ′) and M ′ is a maximal matching of G. Therefore we have
min-match(G \ v) ≥ |M ′| = min-match(G).
(3) : We can prove this by replacing “an induced matching" with “a matching" and “ind-match" with
“match" in the proof of (1).

2.3. Special families of connected simple graphs G
(1)
a,b,c, G

(2)
a,b,c,d,e and G

(3)
a,b,c

In this subsection, we introduce three families of connected simple graphs G(1)
a,b,c, G

(2)
a,b,c,d,e and G

(3)
a,b,c.

These graphs play an important role in the proof of main results.

First, we introduce the graph G
(1)
a,b,c.

G
(1)
a,b,c : Let a, b, c be integers with a ≥ 1, a ≥ b ≥ 0 and c ≥ 0 and set

X = {x1, x2, . . . , x2a}, Y = {y1, y2, . . . , y2b}, Z = {z1, z2, . . . , zc}.

Note that we consider Y = ∅ if b = 0 and Z = ∅ if c = 0. We define the graph G
(1)
a,b,c as follows; see

Figure 2:

• V
(
G

(1)
a,b,c

)
= X ∪ Y ∪ Z,

• E
(
G

(1)
a,b,c

)
=

 ⋃
1≤i<j≤2a

{xi, xj}

 ∪

{
2b⋃
i=1

{xi, yi}

}
∪

{
c⋃

i=1

{x2a, zi}

}
.

x1

��������
x2

��������
x2b

��������

y1�������� y2�������� · · ·

· · ·

y2b��������

x2b+1

��������
x2a−1

�������� x2a ��������

z1��������

��
��
��
��

z2��������
rrr

rrr

zc��������

::::::::

...

· · ·

K2a

Figure 2. The graph G
(1)
a,b,c

Lemma 2.8. Let G(1)
a,b,c be the graph as above. Then we have

(1)
∣∣∣V (

G
(1)
a,b,c

)∣∣∣ = 2a+ 2b+ c.

(2) ind-match
(
G

(1)
a,b,c

)
= 1.
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(3) min-match
(
G

(1)
a,b,c

)
= a.

(4) match
(
G

(1)
a,b,c

)
= a+ b.

Proof. (1) :
∣∣∣V (

G
(1)
a,b,c

)∣∣∣ = |X ∪ Y ∪ Z| = 2a+ 2b+ c.

(2) : Since each edge of G
(1)
a,b,c contains a vertex of the complete subgraph K2a, there is no induced

matching M of G(1)
a,b,c with |M | ≥ 2. Hence one has ind-match

(
G

(1)
a,b,c

)
= 1.

(3) : By using Corollary 2.5, it follows that

min-match
(
G

(1)
a,b,c

)
≥ min-match

((
G

(1)
a,b,c

)
X

)
= min-match(K2a) = a.

Moreover, it also follows that min-match
(
G

(1)
a,b,c

)
≤ a since

a⋃
i=1

{xi, xa+i} is a maximal matching of(
G

(1)
a,b,c

)
. Thus we have min-match

(
G

(1)
a,b,c

)
= a.

(4) : Let M =

{
2b⋃
i=1

{xi, yi}

}
∪

{
a−b⋃
i=1

{x2b+i, xa+b+i}

}
. Then one has match

(
G

(1)
a,b,c

)
≥ a+ b since M is

a matching of G(1)
a,b,c with |M | = a+ b. If Z = ∅, then match

(
G

(1)
a,b,c

)
= a+ b holds since M is a perfect

matching of G(1)
a,b,c.

Assume that Z ̸= ∅. Then, by virtue of Proposition 2.1(2) together with Lemma 2.7, it follows that

match
(
G

(1)
a,b,c

)
= match

(
G

(1)
a,b,1

)
≤


∣∣∣G(1)

a,b,1

∣∣∣
2

 =

⌊
2a+ 2b+ 1

2

⌋
= a+ b.

Hence we have match
(
G

(1)
a,b,c

)
= a+ b.

Next, we introduce the graph G
(2)
a,b,c,d,e.

G
(2)
a,b,c,d,e : Let a, b, c, d, e be integers with a > b ≥ 0, c ≥ 1, d, e ≥ 0 and d+ e ≥ 1 and set

X = {x1, x2, . . . , x2a}, Y = {y1, y2, . . . , y2b}, Z = {z1, z2, . . . , zc},

U = {u1, u2, . . . , u2d}, U ′ = {u′
1, u

′
2, . . . , u

′
2d}, V = {v1, v2, . . . , v2e}.

Note that we consider Y = ∅ if b = 0, U = U ′ = ∅ if d = 0 and V = ∅ if e = 0. We define the graph
G

(2)
a,b,c,d,e as follows; see Figure 3:

• V
(
G

(2)
a,b,c,d,e

)
= X ∪ Y ∪ Z ∪ U ∪ U ′ ∪ V ∪ {w},

• E
(
G

(2)
a,b,c,d,e

)
=

 ⋃
1≤i<j≤2a

{xi, xj}

 ∪

{
2b⋃
i=1

{xi, yi}

}
∪

{
c⋃

i=1

{x2a, zi}

}
∪

{
d⋃

i=1

{ui, ud+i}

}

∪

{
d⋃

i=1

{ui, u
′
i}

}
∪

{
e⋃

i=1

{vi, ve+i}

}
∪ {{w,w′} | w′ ∈ X ∪ V ∪ U} .
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Figure 3. The graph G
(2)
a,b,c,d,e

Lemma 2.9. Let G
(2)
a,b,c,d,e be the graph as above. Then we have

1.
∣∣∣V (

G
(2)
a,b,c,d,e

)∣∣∣ = 2a+ 2b+ c+ 4d+ 2e+ 1.

2. ind-match
(
G

(2)
a,b,c,d,e

)
= d+ e+ 1.

3. min-match
(
G

(2)
a,b,c,d,e

)
= a+ d+ e.

4. match
(
G

(2)
a,b,c,d,e

)
= a+ b+ 2d+ e+ 1.

Proof. (1) :
∣∣∣V (

G
(2)
a,b,c,d,e

)∣∣∣ = |X ∪ Y ∪ Z ∪ U ∪ U ′ ∪ V ∪ {w}| = 2a+ 2b+ c+ 4d+ 2e+ 1.
To prove (2), (3) and (4), we calculate the induced matching number and the minimum matching number
of the induced subgraphs

{
G

(2)
a,b,c,d,e

}
X∪Y ∪Z

,
{
G

(2)
a,b,c,d,e

}
U∪U ′

and
{
G

(2)
a,b,c,d,e

}
V

.

• Since
{
G

(2)
a,b,c,d,e

}
X∪Y ∪Z

= G
(1)
a,b,c , by virtue of Lemma 2.8, it follows that

– ind-match
({

G
(2)
a,b,c,d,e

}
X∪Y ∪Z

)
= 1.

– min-match
({

G
(2)
a,b,c,d,e

}
X∪Y ∪Z

)
= a.

• For each 1 ≤ i ≤ d, let Ui = {ui, ud+i, u
′
i, u

′
d+i}. Then

{
G

(2)
a,b,c,d,e

}
Ui

= P4 and

{
G

(2)
a,b,c,d,e

}
U∪U ′

=

d⋃
i=1

{
G

(2)
a,b,c,d,e

}
Ui

= dP4,

where P4 is the path graph with |V (P4)| = 4 and dP4 is the disjoint union of d copies of P4. Since
ind-match(P4) = min-match(P4) = 1, by virtue of Lemma 2.6, it follows that
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– ind-match
({

G
(2)
a,b,c,d,e

}
U∪U ′

)
= ind-match(dP4) = d · ind-match(P4) = d.

– min-match
({

G
(2)
a,b,c,d,e

}
U∪U ′

)
= min-match(dP4) = d · min-match(P4) = d.

• Since
{
G

(2)
a,b,c,d,e

}
V

= eK2 and ind-match(K2) = min-match(K2) = 1, by virtue of Lemma 2.6, it
follows that

– ind-match
({

G
(2)
a,b,c,d,e

}
V

)
= ind-match(eK2) = e · ind-match(K2) = e.

– min-match
({

G
(2)
a,b,c,d,e

}
V

)
= min-match(eK2) = e · min-match(K2) = e.

Now we are in position to prove (2), (3) and (4).

(2) : Let S = Y ∪ Z ∪ U ′. Then S is an independent set of G(2)
a,b,c,d,e \ w and G

(2)
a,b,c,d,e is the S-

suspension of G(2)
a,b,c,d,e\w. Since G

(2)
a,b,c,d,e\w is the disjoint union of

{
G

(2)
a,b,c,d,e

}
X∪Y ∪Z

,
{
G

(2)
a,b,c,d,e

}
U∪U ′

and
{
G

(2)
a,b,c,d,e

}
V

, by virtue of Lemmas 2.2, 2.6 and the above calculation, it follows that

ind-match
(
G

(2)
a,b,c,d,e

)
= ind-match

(
G

(2)
a,b,c,d,e \ w

)
= ind-match

({
G

(2)
a,b,c,d,e

}
X∪Y ∪Z

∪
{
G

(2)
a,b,c,d,e

}
U∪U ′

∪
{
G

(2)
a,b,c,d,e

}
V

)
= ind-match

({
G

(2)
a,b,c,d,e

}
X∪Y ∪Z

)
+ ind-match

({
G

(2)
a,b,c,d,e

}
U∪U ′

)
+ind-match

({
G

(2)
a,b,c,d,e

}
V

)
= 1 + d+ e.

(3) : Since G
(2)
a,b,c,d,e \w is the disjoint union of

{
G

(2)
a,b,c,d,e

}
X∪Y ∪Z

,
{
G

(2)
a,b,c,d,e

}
U∪U ′

and
{
G

(2)
a,b,c,d,e

}
V

,
by virtue of Corollary 2.5, Lemma 2.6 and the above calculation, it follows that

min-match
(
G

(2)
a,b,c,d,e

)
≥ min-match

(
G

(2)
a,b,c,d,e \ w

)
= min-match

({
G

(2)
a,b,c,d,e

}
X∪Y ∪Z

∪
{
G

(2)
a,b,c,d,e

}
U∪U ′

∪
{
G

(2)
a,b,c,d,e

}
V

)
= min-match

({
G

(2)
a,b,c,d,e

}
X∪Y ∪Z

)
+ min-match

({
G

(2)
a,b,c,d,e

}
U∪U ′

)
+min-match

({
G

(2)
a,b,c,d,e

}
V

)
= a+ d+ e.

Next, put M =

{
a⋃

i=1

{xi, xa+i}

}
∪

{
d⋃

i=1

{ui, ud+i}

}
∪

{
e⋃

i=1

{vi, ve+i}

}
. Then M is a maximal matching

with |M | = a+ d+ e since V
(
G

(2)
a,b,c,d,e

)
\ V (M) = Y ∪ Z ∪ U ′ ∪ {w} is an independent set of G(2)

a,b,c,d,e.

Hence min-match
(
G

(2)
a,b,c,d,e

)
≤ |M | = a+ d+ e. Thus one has min-match

(
G

(2)
a,b,c,d,e

)
= a+ d+ e.
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(4) : Let

M ′ =

{
2b⋃
i=1

{xi, yi}

}
∪

{
a−b−1⋃
i=1

{x2b+i, xa+b−1+i}

}
∪

{
2d⋃
i=1

{ui, u
′
i}

}

∪

{
e⋃

i=1

{vi, ve+i}

}
∪ {x2a−1, w} ∪ {x2a, z1}.

Then we have match
(
G

(2)
a,b,c,d,e

)
≥ |M ′| = a + b + 2d + e + 1 since M ′ is a matching of G(2)

a,b,c,d,e with
|M | = 2b+(a− b−1)+2d+ e+2 = a+ b+2d+ e+1. Moreover, by virtue of Proposition 2.1(2) together
with Lemma 2.7(3), it follows that

match
(
G

(2)
a,b,c,d,e

)
= match

(
G

(2)
a,b,1,d,e

)
≤


∣∣∣G(2)

a,b,1,d,e

∣∣∣
2


=

⌊
2a+ 2b+ 4d+ 2e+ 2

2

⌋
= a+ b+ 2d+ e+ 1.

Therefore we have match
(
G

(2)
a,b,c,d,e

)
= a+ b+ 2d+ e+ 1.

Finally, we introduce the graph G
(3)
a,b,c .

G
(3)
a,b,c : Let a, b, c be integers with a ≥ 1, b ≥ 0 and c ≥ 1 and set

X = {x1, x2, . . . , x2a}, Y = {y1, y2, . . . , y2b}, Z = {z1, z2, . . . , zc}.

Note that Y = ∅ if b = 0. We define the graph G
(3)
a,b,c as follows; see Figure 4:

• V
(
G

(3)
a,b,c

)
= X ∪ Y ∪ Z ∪ {v} ∪ {w},

• E
(
G

(3)
a,b,c

)
=

 ⋃
1≤i<j≤2a

{xi, xj}

 ∪

{
b⋃

i=1

{yi, yb+i}

}
∪

{
c⋃

i=1

{v, zi}

}
∪{{w,w′} | w′ ∈ X ∪ Y ∪ {v}}.

Lemma 2.10. Let G
(3)
a,b,c be the graph as above. Then we have

1.
∣∣∣V (

G
(3)
a,b,c

)∣∣∣ = 2a+ 2b+ c+ 2.

2. ind-match
(
G

(3)
a,b,c

)
= b+ 2.

3. min-match
(
G

(3)
a,b,c

)
= match

(
G

(3)
a,b,c

)
= a+ b+ 1.

Proof. (1) :
∣∣∣V (

G
(3)
a,b,c

)∣∣∣ = |X ∪ Y ∪ Z ∪ {v} ∪ {w}| = 2a+ 2b+ c+ 2.
To prove (2) and (3), we calculate the induced matching number and the minimum matching number of
the induced subgraphs

{
G

(3)
a,b,c

}
X

,
{
G

(3)
a,b,c

}
Y

and
{
G

(3)
a,b,c

}
Z∪{v}

.
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Figure 4. The graph G
(3)
a,b,c

• Since
{
G

(3)
a,b,c

}
X

= K2a, it follows that

– ind-match
({

G
(3)
a,b,c

}
X

)
= ind-match(K2a) = 1.

– min-match
({

G
(3)
a,b,c

}
X

)
= min-match(K2a) = a.

• Since
{
G

(3)
a,b,c

}
Y
= bK2 and ind-match(K2) = min-match(K2) = 1, by Lemma 2.6, it follows that

– ind-match
({

G
(3)
a,b,c

}
Y

)
= ind-match(bK2) = b · ind-match(K2) = b.

– min-match
({

G
(3)
a,b,c

}
Y

)
= min-match(bK2) = b · min-match(K2) = b.

• Since
{
G

(3)
a,b,c

}
Z∪{v}

is the star graph K1,c, it follows that

– ind-match
({

G
(3)
a,b,c

}
Z∪{v}

)
= 1.

– min-match
({

G
(3)
a,b,c

}
Z∪{v}

)
= 1.

Now we are in position to prove (2) and (3).

(2) : Note that Z is an independent set of G(3)
a,b,c \ w and G

(3)
a,b,c is the S-suspension of G(3)

a,b,c \ w.

Since G
(3)
a,b,c \ w is the disjoint union of

{
G

(3)
a,b,c

}
X

,
{
G

(3)
a,b,c

}
Y

and
{
G

(3)
a,b,c

}
Z∪{v}

, by virtue of Lemmas
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2.2, 2.6 and the above calculation, it follows that

ind-match
(
G

(3)
a,b,c

)
= ind-match

(
G

(3)
a,b,c \ w

)
= ind-match

({
G

(3)
a,b,c

}
X
∪
{
G

(3)
a,b,c

}
Y
∪
{
G

(3)
a,b,c

}
Z∪{v}

)
= ind-match

({
G

(3)
a,b,c

}
X

)
+ ind-match

({
G

(3)
a,b,c

}
Y

)
+ ind-match

({
G

(3)
a,b,c

}
Z∪{v}

)
= 1 + b+ 1

= b+ 2.

(3) : Since G
(3)
a,b,c \ w is the disjoint union of

{
G

(3)
a,b,c

}
X

,
{
G

(3)
a,b,c

}
Y

and
{
G

(3)
a,b,c

}
Z∪{v}

, by virtue of

Corollary 2.5, Lemma 2.6 and the above calculation, it follows that

min-match
(
G

(3)
a,b,c

)
≥ min-match

(
G

(3)
a,b,c \ w

)
= min-match

({
G

(3)
a,b,c

}
X
∪
{
G

(3)
a,b,c

}
Y
∪
{
G

(3)
a,b,c

}
Z∪{v}

)
= min-match

({
G

(3)
a,b,c

}
X

)
+ min-match

({
G

(3)
a,b,c

}
Y

)
+ min-match

({
G

(3)
a,b,c

}
Z∪{v}

)
= a+ b+ 1.

Moreover, by Proposition 2.1 and Lemma 2.7, one has

min-match
(
G

(3)
a,b,c

)
≤ match

(
G

(3)
a,b,c

)
= match

(
G

(3)
a,b,1

)
≤


∣∣∣G(3)

a,b,1

∣∣∣
2


=

⌊
2a+ 2b+ 3

2

⌋
= a+ b+ 1.

Therefore we have min-match
(
G

(3)
a,b,c

)
= match

(
G

(3)
a,b,c

)
= a+ b+ 1.

3. Proof of the first main result

In this section, we give a proof of the first main result as below.

Theorem 3.1. Let n ≥ 2 be an integer and set

Graphind-match,min-match,match(n)

=

{
(p, q, r) ∈ N3

∣∣∣∣ There exists a connected simple graph G with |V (G)| = n
and ind-match(G) = p, min-match(G) = q, match(G) = r

}
.

Then we have the following:
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(1) If n is odd, then

Graphind-match,min-match,match(n)

=

{
(p, q, r) ∈ N3

∣∣∣∣ 1 ≤ p ≤ q ≤ r ≤ 2q and r ≤ n− 1

2

}
.

(2) If n is even, then

Graphind-match,min-match,match(n)

=
{
(1, q, r) ∈ N3

∣∣∣ 1 ≤ q ≤ r ≤ 2q and r ≤ n

2

}
∪

{
(p, q, r) ∈ N3

∣∣∣ 2 ≤ p ≤ q ≤ r ≤ 2q, r ≤ n

2
and (q, r) ̸=

(n
2
,
n

2

)}
.

Proof. Assume that (p, q, r) ∈ Graphind-match,min-match,match(n). Then there exists a connected simple
graph G such that |V (G)| = n, ind-match(G) = p, min-match(G) = q and match(G) = r.

• If n is odd, then
⌊n
2

⌋
=

n− 1

2
. Hence, by Proposition 2.1, one has

(p, q, r) ∈
{
(p, q, r) ∈ N3

∣∣∣∣ 1 ≤ p ≤ q ≤ r ≤ 2q and r ≤ n− 1

2

}
.

• If n is even, then
⌊n
2

⌋
=

n

2
. If p = 1, then we have

(1, q, r) ∈
{
(1, q, r) ∈ N3

∣∣∣ 1 ≤ q ≤ r ≤ 2q and r ≤ n

2

}
by Proposition 2.1.
Assume that p ≥ 2. By virtue of Propositions 2.1 and 2.3, one has

(p, q, r) ∈
{
(p, q, r) ∈ N3

∣∣∣ 2 ≤ p ≤ q ≤ r ≤ 2q, r ≤ n

2
and (q, r) ̸=

(n
2
,
n

2

)}
.

We show the reverse inclusion. Assume that n is odd and

(p, q, r) ∈
{
(p, q, r) ∈ N3

∣∣∣∣ 1 ≤ p ≤ q ≤ r ≤ 2q and r ≤ n− 1

2

}
.

• Assume p = 1. Note that q ≥ 1, q ≥ r − q ≥ 0 and n − 2r ≥ 1. Let us consider the graph
G

(1)
q,k,n−2(q+k), where k = r − q; see Figure 5:

By virtue of Lemma 2.8, one has

–
∣∣∣V (

G
(1)
q,k,n−2(q+k)

)∣∣∣ = 2q + 2k + n− 2(q + k) = n.

– ind-match
(
G

(1)
q,k,n−2(q+k)

)
= 1.

– min-match
(
G

(1)
q,k,n−2(q+k)

)
= q.

– match
(
G

(1)
q,k,n−2(q+k)

)
= q + k = r.

Hence we have (1, q, r) ∈ Graphind-match,min-match,match(n).
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Figure 6. The graph G
(2)
q−p+1,r−p−q,n−2r+1,p−1,0

• Assume that p ≥ 2 and p + q − r ≤ 0. Then note that q − p + 1 > r − p − q ≥ 0, n − 2r + 1 ≥ 1,
p−1 ≥ 1. Now we consider the graph G

(2)
q−p+1,r−p−q,n−2r+1,p−1,0; see Figure 6. By virtue of Lemma

2.9, one has

–
∣∣∣V (

G
(2)
q−p+1,r−p−q,n−2r+1,p−1,0

)∣∣∣
= 2(q − p+ 1) + 2(r − p− q) + (n− 2r + 1) + 4(p− 1) + 1 = n.

– ind-match
(
G

(2)
q−p+1,r−p−q,n−2r+1,p−1,0

)
= (p− 1) + 1 = p.

– min-match
(
G

(2)
q−p+1,r−p−q,n−2r+1,p−1,0

)
= (q − p+ 1) + (p− 1) = q.

– match
(
G

(2)
q−p+1,r−p−q,n−2r+1,p−1,0

)
= (q − p+ 1) + (r − p− q) + 2(p− 1) + 1 = r.

Thus we have (p, q, r) ∈ Graphind-match,min-match,match(n).
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• Assume that p ≥ 2, p + q − r > 0 and q < r. Then note that q − p + 1 > 0, n − 2r + 1 ≥ 1,
r−q−1 ≥ 0 and p+q−r > 0. Now we consider the graph G

(2)
q−p+1,0,n−2r+1,r−q−1,p+q−r; see Figure

7. By virtue of Lemma 2.9, one has
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Figure 7. The graph G
(2)
q−p+1,0,n−2r+1,r−q−1,p+q−r

–
∣∣∣V (

G
(2)
q−p+1,0,n−2r+1,r−q−1,p+q−r

)∣∣∣
= 2(q − p+ 1) + (n− 2r + 1) + 4(r − q − 1) + 2(p+ q − r) + 1 = n.

– ind-match
(
G

(2)
q−p+1,0,n−2r+1,r−q−1,p+q−r

)
= (r − q − 1) + (p+ q − r) + 1 = p.

– min-match
(
G

(2)
q−p+1,0,n−2r+1,r−q−1,p+q−r

)
= (q − p+ 1) + (r − q − 1) + (p+ q − r) = q.

– match
(
G

(2)
q−p+1,0,n−2r+1,r−q−1,p+q−r

)
= (q − p+ 1) + 2(r − q − 1) + (p+ q − r) + 1 = r.

Thus we have (p, q, r) ∈ Graphind-match,min-match,match(n).

• Assume that p ≥ 2 and q = r. Note that q− p+1 ≥ 1, p− 2 ≥ 0 and n− 2q ≥ 1. Now we consider
the graph G

(3)
q−p+1,p−2,n−2q; see Figure 8:

By virtue of Lemma 2.10, one has

–
∣∣∣V (

G
(3)
q−p+1,p−2,n−2q

)∣∣∣ = 2(q − p+ 1) + 2(p− 2) + (n− 2q) + 2 = n.

– ind-match
(
G

(3)
q−p+1,p−2,n−2q

)
= (p− 2) + 2 = p.

– min-match
(
G

(3)
q−p+1,p−2,n−2q

)
= match

(
G

(3)
a,b,c

)
= (q − p+ 1) + (p− 2) + 1 = q.

Thus we have (p, q, r) ∈ Graphind-match,min-match,match(n).
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Figure 8. The graph G
(3)
q−p+1,p−2,n−2q

Next, we assume that n is even and

(p, q, r) ∈
{
(1, q, r) ∈ N3

∣∣∣ 1 ≤ q ≤ r ≤ 2q and r ≤ n

2

}
∪
{
(p, q, r) ∈ N3

∣∣∣ 2 ≤ p ≤ q ≤ r ≤ 2q, r ≤ n

2
and (q, r) ̸=

(n
2
,
n

2

)}
.

As in the case that n is odd, we can see that (p, q, r) ∈ Graphind-match,min-match,match(n) by considering
G

(1)
q,k,n−2(q+k), G

(2)
q−p+1,r−p−q,n−2r+1,p−1,0, G

(2)
q−p+1,0,n−2r+1,r−q−1,p+q−r and G

(3)
q−p+1,p−2,n−2q.

Therefore, we have the desired conclusion.

4. The set Graphreg,min-match,match(n)

In this section, as an application of Theorem 3.1, we determine the possible tuples

(reg(G),min-match(G),match(G), |V (G)|)

arising from connected simple graphs, where reg(G) = reg(K[V (G)]/I(G)) denote the Castelnuovo–
Mumford regularity (regularity for short) of the quotient ring K[V (G)]/I(G) whose definition will be
given later.

Let G be a finite simple graph on the vertex set V (G) =
{
x1, . . . , x|V (G)|

}
and E(G) the set of edges

of G. Let K[V (G)] = K
[
x1, . . . , x|V (G)|

]
be the polynomial ring in |V (G)| variables over a field K. Now

we associate with G the quadratic monomial ideal

I(G) = (xixj | {xi, xj} ∈ E(G)) ⊂ K[V (G)].

The ideal I(G) is called the edge ideal of G. By setting deg xi = 1 for all 1 ≤ i ≤ |V (G)|, I(G)
can be regarded as a homogeneous ideal of K[V (G)]. Let βi,j(K[V (G)]/I(G)) be the (i, j)-th graded
Betti number in the minimal graded free resolution of K[V (G)]/I(G). The regularity of K[V (G)]/I(G),
denoted by reg(G), is defined by

reg(G) = reg(K[V (G)]/I(G)) := max{j − i | βi,j(K[V (G)]/I(G)) ̸= 0}.
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For more details, see [30, Section 18].

The relationship between graph-theoretical invariants of G and ring-theoretical invariants of the
quotient ring K[V (G)]/I(G) has been studied. As previous results,

• In [24, Theorem 1], Hirano and the first-named author determined the possible tuples

(ind-match(G),min-match(G),match(G),dim(G))

arising from connected simple graphs, where dim(G) = dimK[V (G)]/I(G) denotes the Krull di-
mension of K[V (G)]/I(G).

• In [23], Hibi et al. proved that

deg(G) + reg(G) ≤ |V (G)|

for all simple graph G, where deg(G) = deg hK[V (G)]/I(G)(t) denotes the degree of the h-polynomial
of K[V (G)]/I(G).

• In [22], Hibi et al. studied the possible tuples (reg(G),deg(G), |V (G)|) arising from connected simple
graphs G and determined these tuples arising from Cameron–Walker graphs, where a finite con-
nected simple graph G is said to be a Cameron–Walker graph if ind-match(G) = min-match(G) =
match(G) and if G is neither a star graph nor a star triangle.

• In [19], Hibi et al. studied the possible tuples (depth(G),dim(G), |V (G)|) arising from connected
simple graphs G and determined these tuples arising from Cameron–Walker graphs. They also
determined the possible tuples

(depth(G), reg(G),dim(G),deg(G), |V (G)|)

arising from Cameron–Walker graphs, where depth(G) = depth(K[V (G)]/I(G)) denotes the depth
of K[V (G)]/I(G);

• Erey–Hibi determined the possible tuples (pd(G), reg(G), |V (G)|) arising from connected bipartite
graphs, where pd(G) = pd(K[V (G)]/I(G)) denotes the projective dimension of K[V (G)]/I(G)
([10, Theorem 3.14]). These tuples were also studied in [14].

The second main result is as follows. We determine the possible tuples

(reg(G),min-match(G),match(G), |V (G)|)

arising from connected simple graphs.

Theorem 4.1. Let n ≥ 2 be an integer and set

Graphreg,min-match,match(n)

=

{
(p′, q, r) ∈ N3

∣∣∣∣ There exists a connected simple graph G with |V (G)| = n
and reg(G) = p′, min-match(G) = q, match(G) = r

}
.

Then one has

Graphreg,min-match,match(n) = Graphind-match,min-match,match(n).

Proof. From [38] and Proposition 2.1(1), we have that

reg(G) ≤ min-match(G) ≤ match(G) ≤ 2min-match(G)

holds for all connected graph G. Since the graphs
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• G
(1)
q,k,n−2(q+k),

• G
(2)
q−p+1,r−p−q,n−2r+1,p−1,0,

• G
(2)
q−p+1,0,n−2r+1,r−q−1,p+q−r and

• G
(3)
q−p+1,p−2,n−2q

which appeared in the proof of Theorem 3.1 are chordal, hence it follows that the regularity of these
graphs equal to its induced matching number by virtue of [15, Corollary 6.9]). Moreover, since both of
the complements of Kn and Kn/2,n/2 are chordal, one has reg(Kn) = reg(Kn/2,n/2) = 1 by virtue of
Fröberg [11]. Thus, by using Proposition 2.3, we have that there is no connected simple graph G with

(reg(G),min-match(G),match(G), |V (G)|) = (p, n/2, n/2, n)

for all p ≥ 2. Therefore we have the desired conclusion.
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