Journal of Algebra Combinatorics Discrete Structures and Applications

On weakly S-2-absorbing filters in lattices

Research Article

Received: 3 February 2024

Accepted: 5 July 2024

Shahabaddin Ebrahimi Atani

Abstract: Let \mathcal{L} be a bounded distributive lattice and S a join closed subset of \mathcal{L} . Following the concept of weakly S-2-absorbing submodules, we define weakly S-2-absorbing filters of \pounds . We will make an intensive investigate the basic properties and possible structures of these filters.

2020 MSC: 97H50, 06A11, 16G30, 06D25

Keywords: Lattice, Filter, Weakly S-2-absorbing filter

Introduction 1.

All lattices considered in this paper are assumed to have a least element denoted by 0 and a greatest element denoted by 1, in other words they are bounded. Our objective in this paper is to extend the notion of weakly S-2-absorbing property in modules theory to weakly S-2-absorbing property in lattice theory. Indeed, we are interested in investigating weakly S-2-absorbing filters to use other notions of weakly S-2-absorbing and associate which exist in the literature as laid forth in [16].

Prime ideals and submodules have a significant place in ring and module theory. Several generalizations of these concepts have been investigated extensively by many authors see, for example, [1, 2, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16]. In 2003, Anderson and Smith in [1] defined weakly prime ideals which is a generalization of prime ideals (also see [7, 9]). A proper ideal P of a ring R is said to be a weakly prime if $0 \neq xy \in P$ for each $x, y \in R$ implies either $x \in P$ or $y \in P$. Badawi generalized the concept of prime ideals in [4]. We recall from [4] that a proper ideal I of a commutative ring R is said to be a 2-absorbing ideal if whenever $abc \in I$ for $a, b, c \in R$, then $ab \in I$ or $ac \in I$ or $bc \in I$ (also see [6]). In 2019, Hamed and Malek [12] introduced the notion of an S-prime ideal, i.e. let $S \subseteq R$ be a multiplicative set and I an ideal of R disjoint from S. We say that I is S-prime if there exists an $s \in S$ such that for all $a, b \in R$ with $ab \in I$, we have $ab \in I$ or $ab \in I$ (also see [14]). Almahdi et. al. [2] introduced the notion of a weakly S-prime ideal as follows: We say that I is a weakly S-prime ideal of R if there is an element $s \in S$ such that for all $x, y \in R$ if $0 \neq xy \in I$, then $xs \in I$ or $ys \in I$.

Shahabaddin Ebrahimi Atani; Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht (email: ebrahimi@guilan.ac.ir).

In 2020, Ulucak, Tekir and Koc [15] introduced the notion of an S-2-absorbing submodules, i.e. let $S \subseteq R$ be a multiplicative set and P a submodule of an R-module M with $S \cap (P:_R M) = \emptyset$. We say that P is an S-2-absorbing submodule if there exists an element $s \in S$ and whenever $abm \in P$ for some $a, b \in R$ and $m \in M$, then $sab \in (P:_R M)$ or $sam \in P$ or $sbm \in P$. In 2021, Naji [13] introduced the notion of an S-2-absorbing primary submodules, i.e. let $S \subseteq R$ be a multiplicative set and P a submodule of an R-module M with $S \cap (P:_R M) = \emptyset$. We say that P is an S-2-absorbing primary submodule if there exists an element $s \in S$ and whenever $abm \in P$ for some $a, b \in R$ and $m \in M$, then $sab \in \sqrt{(P:_R M)}$ or $sam \in P$ or $sbm \in P$. In 2023, Sudharshana [16] introduced the notion of a weakly S-2-absorbing submodules, i.e. let $S \subseteq R$ be a multiplicative set and P a submodule of an R-module M with $S \cap (P:_R M) = \emptyset$. We say that P is a weakly S-2-absorbing submodule if there exists an element $s \in S$ and whenever $0 \neq abm \in P$ for some $a, b \in R$ and $m \in M$, then $sab \in (P:_R M)$ or $sam \in P$ or $sbm \in P$.

Let \mathcal{L} be a bounded distributive lattice. We say that a subset $S \subseteq \mathcal{L}$ is join closed if $0 \in S$ and $s_1 \vee s_2 \in S$ for all $s_1, s_2 \in S$ (if P is a prime filter of \mathcal{L} , then $\mathcal{L} \setminus P$ is a join closed subset of \mathcal{L}). Among many results in this paper, the first, preliminaries section contains elementary observations needed later on. Section 3 is dedicated to the investigation of the some basic properties of weakly S-2-absorbing filters. At first, we give the definition of weakly S-2-absorbing filters (Definition 3.1) and provide an example (Example 3.4) of a weakly S-2-absorbing filter of \mathcal{L} that is not a weakly 2-absorbing filter. It is shown (Theorem 3.7) that if S is a join closed subset of \mathcal{L} , then the intersection of two weakly S-2-absorbing filter is a weakly S-2-absorbing filter. We provides some condition under which a weakly S-2-absorbing filter is S-2-absorbing (see Theorem 3.9). Also, in Theorem 3.12, we give two other characterizations of weakly S-2-absorbing filters. The rest of this section, we investigate a more explicit description of the weakly S-2-absorbing filters of \mathcal{L} (see Lemma 3.14, Lemma 3.15, Proposition 3.16 and Theorem 3.17). We continue in Section 4 with the investigation of the stability of weakly S-2-absorbing filters in various lattice-theoretic constructions. Indeed, we investigate the behavior of weakly S-2-absorbing filters under homomorphism, in factor lattices and in cartesian products of lattices (see Theorem 4.3, Theorem 4.5 and Theorem 4.6).

2. Preliminaries

A poset (\mathcal{L}, \leq) is a lattice if $\sup\{a, b\} = a \vee b$ and $\inf\{a, b\} = a \wedge b$ exist for all $a, b \in \mathcal{L}$ (and call \wedge the meet and \vee the join). A lattice \mathcal{L} is complete when each of its subsets X has a join and a meet in £. Setting $X = \pounds$, we see that any non-void complete lattice contains a least element 0 and greatest element 1 (in this case, we say that \mathcal{L} is a lattice with 0 and 1). A lattice \mathcal{L} is called a distributive lattice if $(a \lor b) \land c = (a \land c) \lor (b \land c)$ for all a, b, c in \mathcal{L} (equivalently, \mathcal{L} is distributive if $(a \land b) \lor c = (a \lor c) \land (b \lor c)$ for all a, b, c in \mathcal{L}). A non-empty subset F of a lattice \mathcal{L} is called a filter, if for $a \in F$, $b \in \mathcal{L}$, $a \leq b$ implies $b \in F$, and $x \land y \in F$ for all $x, y \in F$ (so if \mathcal{L} is a lattice with 1, then $1 \in F$ and $\{1\}$ is a filter of \mathcal{L}). A proper filter F of £ is called *prime* if $x \lor y \in F$, then $x \in F$ or $y \in F$. A proper filter F of £ is said to be maximal if G is a filter in £ with $F \subseteq G$, then $G = \pounds$. The intersection of all filters containing a given subset A of £ is the filter generated \overline{by} it, is denoted by T(A). A filter F is called finitely generated if there is a finite subset A of F such that F = T(A). A proper filter F of a lattice \mathcal{L} is called a 2-absorbing (resp. weakly 2-absorbing) filter if whenever $a, b, c \in \mathcal{L}$ and $a \vee b \vee c \in F$ (resp. $1 \neq a \vee b \vee c \in F$), then $a \lor b \in F$ or $a \lor c \in F$ or $b \lor c \in F$. Let P be a filter of £ and S a join closed subset of £ disjoint with S. We say that P is an S-prime (resp. weakly S-prime) filter of \mathcal{L} if there is an element $s \in S$ such that for all $x, y \in \mathcal{L}$ if $x \vee y \in P$ (resp. $1 \neq x \vee y \in P$), then $x \vee s \in P$ or $y \vee s \in P$. A filter P is said to be S-2-absorbing if $P \cap S = \emptyset$ and there exists a fixed $s \in S$ such that for any $x, y, z \in \mathcal{L}$ with $x \vee y \vee z \in P$, then $s \lor x \lor y \in P$ or $s \lor x \lor z \in P$ or $s \lor y \lor z \in P$.

A lattice \mathcal{L} with 1 is called \mathcal{L} -domain if $a \vee b = 1$ $(a, b \in \mathcal{L})$, then a = 1 or b = 1 (so \mathcal{L} is \mathcal{L} -domain if and only if $\{1\}$ is a prime filter of \mathcal{L}). If $x \in \mathcal{L}$, then a complement of x in \mathcal{L} is an element $y \in \mathcal{L}$ such that $x \vee y = 1$ and $x \wedge y = 0$. The lattice \mathcal{L} is complemented if every element of \mathcal{L} has a complement in \mathcal{L} . If \mathcal{L} and \mathcal{L}' are lattices, then a lattice homomorphism $f: \mathcal{L} \to \mathcal{L}'$ is a map from \mathcal{L} to \mathcal{L}' satisfying $f(x \vee y) = f(x) \vee f(y)$ and $f(x \wedge y) = f(x) \wedge f(y)$ for $x, y \in \mathcal{L}$. First we need the following lemmas

proved in [3, 5, 6, 8, 10].

Lemma 2.1. Let \pounds be a lattice.

- (1) A non-empty subset F of \pounds is a filter of \pounds if and only if $x \lor z \in F$ and $x \land y \in F$ for all $x, y \in F$, $z \in \pounds$. Moreover, since $x = x \lor (x \land y)$, $y = y \lor (x \land y)$ and F is a filter, $x \land y \in F$ gives $x, y \in F$ for all $x, y \in \pounds$.
 - (2) Let A be an arbitrary non-empty subset of £. Then

$$T(A) = \{x \in \mathcal{L} : a_1 \land a_2 \land \cdots \land a_n \leq x \text{ for some } a_i \in A \ (1 \leq i \leq n)\}.$$

Moreover, if F is a filter and A is a subset of £ with $A \subseteq F$, then $T(A) \subseteq F$, T(F) = F and T(T(A)) = T(A)

(3) If $\{F_i\}_{i\in\Delta}$ is a chain of filters of \mathcal{L} , then $\bigcup_{i\in\Delta} F_i$ is a filter of \mathcal{L} .

Lemma 2.2. Let F, G be filters of \mathcal{L} and $x \in \mathcal{L}$. The following hold:

- (1) $F \vee G = \{a \vee b : a \in F, b \in G\}$ and $x \vee F = \{a \vee y : y \in F\}$ are filters of \pounds with $F \vee G = F \cap G$.
- (2) If \mathcal{L} is distributive, then $F \wedge G = \{a \wedge b : a \in F, b \in G\}$ is a filter of \mathcal{L} with $F, G \subseteq F \wedge G$
- (3) If \pounds is distributive, F, G are filters of \pounds and $y \in \pounds$, then $(G :_{\pounds} F) = \{x \in \pounds : x \vee F \subseteq G\}$ and $(F :_{\pounds} T(\{y\})) = (F :_{\pounds} y) = \{a \in \pounds : a \vee y \in F\}$ are filters of \pounds .
 - (4) If \pounds is distributive, G, F_1, F_2 are filters of \pounds , then $G \vee (F_1 \wedge F_2) = (G \vee F_1) \wedge (G \vee F_2)$.

Lemma 2.3. [11, Lemma 3.13] Let \mathcal{L}_1 and \mathcal{L}_2 be lattices and $f: \mathcal{L}_1 \to \mathcal{L}_2$ be a lattice homomorphism such that f(1) = 1. The following hold:

- (1) $\operatorname{Ker}(f) = \{x \in \mathcal{L}_1 : f(x) = 1\}$ is a filter of \mathcal{L}_1 ;
- (2) If f is injective, then $Ker(f) = \{1\}$;
- (3) If \mathcal{L}_1 is a complemented lattice, then f is injective if and only if $Ker(f) = \{1\}$.

Assume that $(\pounds_1, \le_1), (\pounds_2, \le_2), \cdots, (\pounds_n, \le_n)$ are lattices $(n \ge 2)$ and let $\pounds = \pounds_1 \times \pounds_2 \times \cdots \times \pounds_n$. We set up a partial order \le_c on \pounds as follows: for each $x = (x_1, x_2, \cdots, x_n), y = (y_1, y_2, \cdots, y_n) \in \pounds$, we write $x \le_c y$ if and only if $x_i \le_i y_i$ for each $i \in \{1, 2, \cdots, n\}$. The following notation below will be kept in this paper: It is straightforward to check that (\pounds, \le_c) is a lattice with $x \lor_c y = (x_1 \lor y_1, x_2 \lor y_2, \cdots, x_n \lor y_n)$ and $x \land_c y = (x_1 \land y_1, \cdots, x_n \land y_n)$. In this case, we say that \pounds is a decomposable lattice.

Quotient lattices are determined by equivalence relations rather than by ideals as in the ring case. If F is a filter of a lattice (\pounds, \leq) , we define a relation on \pounds , given by $x \sim y$ if and only if there exist $a, b \in F$ satisfying $x \wedge a = y \wedge b$. Then \sim is an equivalence relation on \pounds , and we denote the equivalence class of a by $a \wedge F$ and these collection of all equivalence classes by \pounds/F . We set up a partial order \leq_Q on \pounds/F as follows: for each $a \wedge F, b \wedge F \in \pounds/F$, we write $a \wedge F \leq_Q b \wedge F$ if and only if $a \leq b$. The following notation below will be kept in this paper: It is straightforward to check that $(\pounds/F, \leq_Q)$ is a lattice with $(a \wedge F) \vee_Q (b \wedge F) = (a \vee b) \wedge F$ and $(a \wedge F) \wedge_Q (b \wedge F) = (a \wedge b) \wedge F$ for all elements $a \wedge F, b \wedge F \in \pounds/F$. Note that $e \wedge F = F = 1 \wedge F$ if and only if $e \in F$ (see [8, Remark 4.2 and Lemma 4.3]).

3. Characterization of weakly S-2-absorbing filters

In this section, we collect some basic properties concerning weakly S-2-absorbing filters. We introduce the reader the following definition.

Definition 3.1. Let P be a filter of \pounds and S a join closed subset of \pounds . A filter P is said to be weakly S-2-absorbing if $P \cap S = \emptyset$ and there exists a fixed $s \in S$ such that for any $x, y, z \in \pounds$ with $1 \neq x \lor y \lor z \in P$, then $s \lor x \lor y \in P$ or $s \lor x \lor z \in P$ or $s \lor y \lor z \in P$.

- **Example 3.2.** (1) A weakly 2-absorbing filter P of \mathcal{L} is weakly S-2-absorbing for each join closed subset S of \mathcal{L} such that $S \cap P = \emptyset$.
 - (2) If $S = \{0\}$, then the weakly 2-absorbing and the weakly S-2-absorbing filters of \mathcal{L} are the same.
- (3) It is clear that every S-2-absorbing filter is a weakly S-2-absorbing filter. Since the filter {1} is (by definition) a weakly S-2-absorbing filter of any lattice, hence the converse is not true in general.
- (4) Every weakly S-prime filter is a weakly S-2-absorbing filter. Indeed, let P be an S-prime filter of £ and $a, b, c \in \pounds$ such that $1 \neq a \lor b \lor c \in P$. Then there exists $s \in S$ such that $s \lor a \in P$ (so $s \lor a \lor b, s \lor a \lor c \in P$, as P is a filter) or $s \lor b \lor c \in P$, as needed.
- **Example 3.3.** Let $\mathcal{L}_1 = \{0, a, b, c, d, 1\}$ be a lattice with the relations $0 \le a \le d \le 1$, $0 \le b \le d \le 1$, $0 \le c \le 1$ and $a \land b = a \land c = d \land c = c \land b = 0$. Suppose that $\mathcal{L} = \mathcal{L}_1 \times \mathcal{L}_1$, $P = \{b, d, 1\} \times \{1\}$ and $S = \{0, c\} \times \{0, c\}$; so P is a filter of \mathcal{L} with $P \cap S = \emptyset$. Then P is an weakly S-2-absorbing filter. Indeed, let $(1, 1) \ne (a_1, b_1) \lor_c (a_2, b_2) \lor_c (a_3, b_3) \in P$ for some $(a_1, b_1), (a_2, b_2), (a_3, b_3) \in \mathcal{L}$. Then $(c, c) \in S$, $b_1 \lor b_2 \lor b_3 = 1$ and $a_1 \lor a_2 \lor a_3 \in \{b, d\}$. Now consider the following two cases.
- **Case 1:** There exists $i \in \{1, 2, 3\}$ such that $b_i = 1$, say $b_1 = 1$. If $a_1 \vee a_2 \vee a_3 = b$ and there exists $i \in \{1, 2, 3\}$ such that $a_i = 0$, say $a_1 = 0$, then either $(c, c) \vee_c (a_1, b_1) \vee_c (a_2, b_2) = (1, 1) \in P$ or $(c, c) \vee_c (a_1, b_1) \vee_c (a_3, b_3) = (1, 1) \in P$. So we may assume that a_1, a_2, a_3 are non-zero elements. Then $(c, c) \vee_c (a_1, b_1) \vee_c (a_2, b_2) = (1, 1) \in P$. Similarly, for $a_1 \vee_2 \vee a_3 = d$.
- **Case 2:** $b_1 \neq 1, b_2 \neq 1$ and $b_3 \neq 1$. Then there exists $i \in \{1, 2, 3\}$ such that $b_i = c$, say $b_1 = c$ and either $b_2 \in \{a, b, d\}$ or $b_3 \in \{a, b, d\}$. Let $b_1 = c$ and $b_2 \in \{a, b, d\}$. If $a_1 \vee a_2 \vee a_3 = b$ and $a_1 = 0$, then $(c, c) \vee_c (a_1, b_1) \vee_c (a_2, b_2) = (1, 1) \in P$ or $(c, c) \vee_c (a_1, b_1) \vee_c (a_3, b_3) = (1, 1) \in P$. If $a_1 \neq 0$, then $(c, c) \vee_c (a_1, b_1) \vee_c (a_2, b_2) = (1, 1) \in P$. Similarly, for $b_1 = c$ and $b_3 \in \{a, b, d\}$. By an argument like that as above, when $a_1 \vee a_2 \vee a_3 = d$ the result holds.
- **Example 3.4.** Let $\mathcal{L}_1 = \{0, a, b, c, 1\}$ be a lattice with the relations $0 \le a \le c \le 1$, $0 \le b \le c \le 1$, $a \lor b = c$ and $a \land b = 0$. Suppose that $\mathcal{L} = \mathcal{L}_1 \times \mathcal{L}_1$, $P = \{1, c\} \times \{1\}$ and $S = \{0, a\} \times \{0, a\}$; so P is a filter of \mathcal{L} with $P \cap S = \emptyset$. Then P is a weakly S-2-absorbing filter. Indeed, let $(1, 1) \ne (a_1, b_1) \lor_c (a_2, b_2) \lor_c (a_3, b_3) = (c, 1) \in P$ for some $(a_1, b_1), (a_2, b_2), (a_3, b_3) \in \mathcal{L}$. Then $(a, a) \in S$, $b_1 \lor b_2 \lor b_3 = 1$ and $a_1 \lor a_2 \lor a_3 = c$. Since $b_1 \lor_2 \lor b_3 = 1$, we conclude that there exists $i \in \{1, 2, 3\}$ such that $b_i = 1$, say $b_1 = 1$. Then either $(a, a) \lor_c (a_1, b_1) \lor_c (a_2, b_2) \in P$ or $(a, a) \lor_c (a_1, b_1) \lor_c (a_3, b_3) \in P$, as needed.

On the other hand, P is not a weakly 2-absorbing filter since $(1,1) \neq (a,b) \lor (b,0) \lor (0,1) = (c,1) \in P$ but neither $(a,b) \lor (b,0) = (c,b) \in P$ nor $(a,b) \lor (0,1) = (a,1) \in P$ nor $(b,0) \lor (0,1) = (b,1) \in P$. Thus a weakly S-2-absorbing filter need not be a weakly 2-absorbing filter.

- **Example 3.5.** Let $S' \subseteq S$ be join closed subsets of $\mathcal L$ and P a filter of $\mathcal L$ disjoint with S. It s clear that if P is a weakly S'-2-absorbing filter of $\mathcal L$, then P is a weakly S-2-absorbing filter. However, the converse is not true in general. Indeed, suppose that $\mathcal L$ is the lattice as in Example 3.4 and let $S' = \{(0,0)\} \subseteq S = \{0,a\} \times \{0,a\}$. Then $P = \{1,c\} \times \{1\}$ is a weakly S-2-absorbing filter of $\mathcal L$ but not a weakly S'-2-absorbing filter of $\mathcal L$.
- **Proposition 3.6.** Let $S' \subseteq S$ be join closed subsets of \mathcal{L} such that for any $s \in S$, there exists $t \in S$ satisfying $s \lor t \in S'$. If P is a weakly S-2-absorbing filter of \mathcal{L} , then P is a weakly S'-2-absorbing filter of \mathcal{L} .
- **Proof.** Let $x,y,z\in\mathcal{L}$ such that $1\neq x\vee y\vee z\in P$. Then there exists $s\in S$ such that $s\vee x\vee y\in P$ or $s\vee x\vee z\in P$ or $s\vee y\vee z\in P$. By the hypothesis, there exists a $t\in S$ such that $s\vee t\in S'$ and then $s\vee t\vee x\vee y\in P$ or $s\vee t\vee x\vee z\in P$ or $s\vee t\vee x\vee z\in P$ or $s\vee t\vee y\vee z\in P$, as P is a filter. This shows that P is a weakly S'-2-absorbing filter.
- **Theorem 3.7.** If S is a join closed subset of \mathcal{L} , then the intersection of two weakly S-prime filter is a weakly S-2-absorbing filter.
- **Proof.** Let P_1, P_2 be two weakly S-prime filters of \mathcal{L} and $P = P_1 \cap P_2$. Let $a, b, c \in \mathcal{L}$ such that $1 \neq a \lor b \lor c \in P$. Since P_1 is weakly S-prime and $1 \neq a \lor b \lor c \in P_1$, there exists $s_1 \in S$ such that

 $s_1 \lor a \in P_1$ or $s_1 \lor b \lor c \in P_1$. Again as P_2 is weakly S-prime and $1 \neq a \lor b \lor c \in P_2$ there exists $s_2 \in S$ such that $s_2 \lor b \in P_2$ or $s_2 \lor a \lor c \in P_2$. We split the proof into four cases.

Case 1: $s_1 \lor a \in P_1$, $s_1 \lor b \lor c \notin P_1$, $s_2 \lor b \in P_2$ and $s_2 \lor a \lor c \notin P_2$. Now, put $s = s_1 \lor s_2 \in S$. Then $s \lor a \lor b \in P_1 \cap P_2 = P$, as P_1 and P_2 are filters.

Case 2: $s_1 \lor a \in P_1$, $s_1 \lor b \lor c \notin P_1$, $s_2 \lor b \notin P_2$ and $s_2 \lor a \lor c \in P_2$. Set $s = s_1 \lor s_2$. Then $s \lor a \lor c \in P$.

Case 3: $s_1 \lor a \notin P_1$, $s_1 \lor b \lor c \in P_1$, $s_2 \lor b \in P_2$ and $s_2 \lor a \lor c \notin P_2$. It is easy to see that $s \lor b \lor c \in P$, where $s = s_1 \lor s_2$.

Case 4: $s_1 \lor a \notin P_1$, $s_1 \lor b \lor c \in P_1$, $s_2 \lor b \notin P_2$ and $s_2 \lor a \lor c \in P_2$. If $s_1 \lor a \lor c \in P_1$, then $s \lor a \lor c \in P$ and so we are done, where $s = s_1 \lor s_2$. So we may assume that $s_1 \lor a \lor c \notin P_1$. Since P_1 is weakly S-prime, $1 \neq a \lor b \lor c \in P_1$ and $s_1 \lor a \lor c \notin P_1$, we conclude that $s_1 \lor b \in P_1$. Similarly, $s_2 \lor a \in P_2$. Therefore, $s \lor a \lor b \in P$, where $s = s_1 \lor s_2$. Thus P is weakly S-2-absorbing. \square

An element x of \mathcal{L} is called identity join of a lattice \mathcal{L} , if there exists $1 \neq y \in \mathcal{L}$ such that $x \vee y = 1$. The set of all identity joins of a lattice \mathcal{L} is denoted by $I(\mathcal{L})$.

Proposition 3.8. Let P be a filter of \mathcal{L} , S a join closed subset of \mathcal{L} disjoint with P and $S \cap I(\mathcal{L}) = \emptyset$. The following assertions are equivalent:

- (1) P is a weakly S-2-absorbing filter of \mathcal{L} ;
- (2) $(P:_{\pounds} s)$ is a weakly 2-absorbing filter of \pounds for some $s \in S$.

Proof. (1) \Rightarrow (2) Let P be a weakly S-2-absorbing filter of \pounds . Then we keep in mind that there exists a fixed $s \in S$ that satisfies the weakly S-2-absorbing condition. Now, we show that $(P:_{\pounds}s)$ is a weakly 2-absorbing filter of \pounds . Let $x, y, z \in \pounds$ such that $1 \neq x \vee y \vee z \in (P:_{\pounds}s)$ (so $x \vee y \vee z \vee s \neq 1$, as $S \cap I(\pounds) = \emptyset$). Then $1 \neq x \vee y \vee z \vee s \in P$ gives $s \vee x \vee y \in P$ or $s \vee x \vee (s \vee z) = s \vee x \vee z \in P$ or $s \vee y \vee (s \vee z) = s \vee y \vee z \in P$ which means that $x \vee y \in (p:_{\pounds}s)$ or $x \vee z \in (P:_{\pounds}s)$ or $y \vee z \in (P:_{\pounds}s)$. Thus $(P:_{\pounds}s)$ is a weakly 2-absorbing filter of \pounds . The implication of $(2) \Rightarrow (1)$ is clear.

The following theorem provides some condition under which a weakly S-2-absorbing filter is S-2-absorbing.

Theorem 3.9. Let S be a join closed subset of \mathcal{L} and P be a weakly S-2-absorbing filter of \mathcal{L} . If P is not S-2-absorbing, then $P = \{1\}$. In particular, the only weakly S-2-absorbing filters of \mathcal{L} that are not S-2-absorbing can only be $\{1\}$.

Proof. Let P be a weakly S-2-absorbing filter of \pounds and assume that $s \in S$ satisfies weakly S-2-absorbing condition. On the contrary, assume that $P \neq \{1\}$. It suffices to show that P is S-2-absorbing. Let $a,b,c \in \pounds$ such that $a \lor b \lor c \in P$. If $1 \neq a \lor b \lor c \in P$, then P is weakly S-2-absorbing gives $s \lor a \lor b \in P$ or $s \lor a \lor c \in P$ or $s \lor b \lor c \in P$. Now, suppose that $a \lor b \lor c = 1$. Since $P \neq \{1\}$, there exists $p \in P$ such that $p \neq 1$. Then $1 \neq (a \land p) \lor (b \land p) \lor (c \land p) = p \in P$ gives $s \lor (a \land p) \lor (b \land p) = (s \lor a \lor b) \land (s \lor p) \in P$ or $(s \lor a \lor c) \land (s \lor p) \in P$ or $(s \lor b \lor c) \land (s \lor p) \in P$. Therefore, $s \lor a \lor b \in P$ or $s \lor a \lor c \in P$ or $s \lor b \lor c \in P$ by lemma 2.1 (1). This shows that P is an S-2-absorbing filter, as required.

Corollary 3.10. ([6], Theorem 2.2) If P is a weakly 2-absorbing filter that is not 2-absorbing, then $P = \{1\}.$

Proof. Take $S = \{0\}$ in Theorem 3.9.

Theorem 3.11. Let S be a join closed subset of \pounds and P be a weakly S-2-absorbing filter of \pounds . If $a,b,c\in \pounds$ with $a\lor b\lor c=1$ and $s\lor a\lor b, s\lor a\lor c, s\lor b\lor c\notin P$ for any $s\in S$, then the following hold:

- (1) $(a \lor b) \lor P = (a \lor c) \lor P = (b \lor c) \lor P = \{1\};$
- (2) $a \lor P = b \lor P = c \lor P = \{1\}.$

- **Proof.** (1) On the contrary, assume that $(a \lor b) \lor P \neq \{1\}$. Then $a \lor b \lor p \neq 1$ for some $p \in P$. Since $1 \neq a \lor b \lor p = (a \lor b) \lor (p \land c) \in P$, there exists $s \in S$ such that $(s \lor a) \lor (c \land p) = (s \lor a \lor c) \land (s \lor a \lor p) \in P$ or $(s \lor b) \lor (c \land p) = (s \lor b \lor c) \land (s \lor b \lor p) \in P$ or $s \lor a \lor b \in P$ which implies that $s \lor a \lor c \in P$ or $s \lor b \lor c \in P$ or $s \lor a \lor b \in P$ by Lemma 2.1 (1) which is impossible. Thus $(a \lor b) \lor P = \{1\}$. Similarly, $(a \lor c) \lor P = (b \lor c) \lor P = \{1\}$.
- (2) If $a \lor P \neq \{1\}$, then $a \lor p \neq 1$ for some $p \in P$. Since $1 \neq a \lor p = a \lor (b \land p) \lor (c \land p) \in P$, we conclude that there exists $s \in S$ such that $(s \lor a) \lor (b \land p) = (s \lor a \lor b) \land (s \lor a \lor p) \in P$ or $(s \lor a) \lor (c \land p) = (s \lor a \lor c) \land (s \lor a \lor p) \in P$ or $s \lor (b \land p) \lor (c \land p) = (s \lor b \lor c) \land (s \lor p) \in P$ which gives $s \lor a \lor c \in P$ or $s \lor b \lor c \in P$ or $s \lor a \lor b \in P$ by Lemma 2.1 (1) which is a contradiction. Hence $a \lor P = \{1\}$. Similarly, $b \lor P = c \lor P = \{1\}$.

We next give two other characterizations of weakly S-2-absorbing filters.

Theorem 3.12. Let P be a filter of \mathcal{L} and S a join closed subset of \mathcal{L} disjoint with P. The following assertions are equivalent:

- (1) P is a weakly S-2-absorbing filter of \mathcal{L} ;
- (2) For any $a, b \in \mathcal{L}$, there exists $s \in S$ such that if $s \vee a \vee b \notin P$, then $(P :_{\mathcal{L}} a \vee b) = (1 :_{\mathcal{L}} a \vee b)$ or $(P :_{\mathcal{L}} a \vee b) \subseteq (P :_{\mathcal{L}} s \vee a)$ or $(P :_{\mathcal{L}} a \vee b) \subseteq (P :_{\mathcal{L}} s \vee b)$;
- (3) For any $a, b \in \mathcal{L}$ and for any filter F of \mathcal{L} , there exists $s \in S$ such that, if $\{1\} \neq (a \lor b) \lor F \subseteq P$, then $s \lor a \lor b \in P$ or $F \subseteq (P :_{\mathcal{L}} s \lor a)$ or $F \subseteq (P :_{\mathcal{L}} s \lor b)$.
- **Proof.** (1) \Rightarrow (2) Let P be a weakly S-2-absorbing filter of \pounds and assume that $s \in S$ satisfies weakly S-2-absorbing condition. Suppose that $(P:_{\pounds}a \vee b) \neq (1:_{\pounds}a \vee b)$. Since $(1:_{\pounds}a \vee b) \subsetneq (P:_{\pounds}a \vee b)$, we conclude that there exists $e \in (P:_{\pounds}a \vee b)$ such that $a \vee b \vee e \neq 1$. Let $z \in (P:_{\pounds}a \vee b)$. If $a \vee b \vee z \neq 1$, then $s \vee a \vee z \in P$ or $s \vee b \vee z \in P$ by (1), and so $z \in (P:_{\pounds}s \vee a)$ or $z \in (P:_{\pounds}s \vee b)$. Now, suppose that $a \vee b \vee z = 1$. Then $1 \neq a \vee b \vee e = (a \vee b \vee e) \wedge (a \vee b \vee z) = (a \vee b) \vee (z \wedge e) \in P$ implies that $(s \vee a) \vee (z \wedge e) = (s \vee a \vee z) \wedge (s \vee a \vee e) \in P$ or $(s \vee b) \vee (z \wedge e) = (s \vee b \vee z) \wedge (s \vee b \vee e) \in P$; hence $s \vee a \vee z \in P$ or $\vee b \vee z \in P$ by Lemma 2.1 (1). Thus $z \in (P:_{\pounds}s \vee a)$ or $z \in (P:_{\pounds}s \vee b)$, i.e. $(P:_{\pounds}a \vee b) \subseteq (P:_{\pounds}s \vee a)$ or $(P:_{\pounds}a \vee b) \subseteq (P:_{\pounds}s \vee a)$.
- $(2)\Rightarrow (3)$ Let $a,b\in \pounds$ and F a filter of \pounds such that $\{1\}\neq (a\vee b)\vee F\subseteq P$ and suppose that s has the stated property in (2). Assume that $s\vee a\vee b\notin P$. Since $(a\vee b)\vee F\subseteq P$, we conclude that $F\subseteq (P:_{\pounds}a\vee b)$ and by (2), $F\subseteq (1:_{\pounds}a\vee b)$ or $F\subseteq (P:_{\pounds}s\vee a)$ or $F\subseteq (P:_{\pounds}s\vee b)$. If $F\subseteq (1:_{\pounds}a\vee b)$, then $(a\vee b)\vee F=\{1\}$ which is impossible. Therefore, either $F\subseteq (P:_{\pounds}s\vee a)$ or $F\subseteq (P:_{\pounds}s\vee b)$.
- (3) \Rightarrow (1) Let $a, b, c \in \mathcal{L}$ such that $1 \neq a \lor b \lor c \in P$. Then $\{1\} \neq (a \lor b) \lor T(\{c\}) \subseteq P$ gives $s \lor a \lor b \in P$ or $T(\{c\}) \subseteq (P :_{\mathcal{L}} s \lor a)$ or $T(\{c\}) \subseteq (P :_{\mathcal{L}} s \lor b)$ by (3) which implies that $s \lor a \lor b \in P$ or $s \lor a \lor c \in P$ or $s \lor b \lor c \in P$, i.e. (1) holds.

Corollary 3.13. For proper filter P of \mathcal{L} , The following assertions are equivalent:

- (1) **p** is a weakly 2-absorbing filter of \mathcal{L} ;
- (2) For any $a, b \in \mathcal{L}$, if $a \lor b \notin P$, then $(P :_{\mathcal{L}} a \lor b) = (1 :_{\mathcal{L}} a \lor b)$ or $(P :_{\mathcal{L}} a \lor b) \subseteq (P :_{\mathcal{L}} a)$ or $(P :_{\mathcal{L}} a \lor b) \subseteq (P :_{\mathcal{L}} b)$;
- (3) For any $a,b \in \mathcal{L}$ and for any filter F of \mathcal{L} , if $\{1\} \neq (a \vee b) \vee F \subseteq P$, then $a \vee b \in P$ or $F \subseteq (P:_{\mathcal{L}} a)$ or $F \subseteq (P:_{\mathcal{L}} b)$.

Proof. Take $S = \{0\}$ in Theorem 3.12.

Lemma 3.14. Let P be a filter of \pounds and S a join closed subset of \pounds disjoint with P. The following assertions are equivalent:

- (1) P is a weakly S-2-absorbing filter of \mathcal{L} ;
- (2) There exists an $s \in S$ such that for any $a, b \in \mathcal{L}$, if $\{1\} \neq (a \lor b) \lor F \subseteq P$ for some filter F of \mathcal{L} , then $s \lor a \lor b \in P$ or $F \subseteq (P :_{\mathcal{L}} s \lor a)$ or $F \subseteq (P :_{\mathcal{L}} s \lor b)$.

- **Proof.** (1) \Rightarrow (2) By the hypothesis, we keep in mind that there exists a fixed $s \in S$ that satisfies the weakly S-2-absorbing condition. Let $a, b \in \mathcal{L}$ such that $\{1\} \neq (a \lor b) \lor F \subseteq P$ for some filter F of \mathcal{L} . Suppose that $s \lor a \lor b \notin P$. Now, it suffices to show that $F \subseteq (P :_{\mathcal{L}} s \lor a)$ or $F \subseteq (P :_{\mathcal{L}} s \lor b)$. Let $f \in F$ (so $a \lor b \lor f \in P$). If $a \lor b \lor f \neq 1$, then $s \lor a \lor f \in P$ or $s \lor b \lor f \in P$ which implies that $F \subseteq (P :_{\mathcal{L}} s \lor a)$ or $F \subseteq (P :_{\mathcal{L}} s \lor b)$. So suppose that $a \lor b \lor f = 1$. Since $(a \lor b) \lor F \neq \{1\}$, we conclude that $1 \neq a \lor b \lor f_1 \in P$ for some $f_1 \in F$; so $s \lor a \lor f_1 \in P$ or $s \lor b \lor f_1 \in P$. Now, we put $f_2 = f \land f_1$. Then $1 \neq a \lor b \lor f_2 = a \lor b \lor f_1 \in P$ which gives $s \lor a \lor f_2 \in P$ or $s \lor b \lor f_2 \in P$. We split the proof into three cases.
- Case 1: $s \lor a \lor f_1 \in P$ and $s \lor b \lor f_1 \in P$. Since $s \lor a \lor f_2 = (s \lor a \lor f) \land (s \lor a \lor f_1) \in P$ or $s \lor b \lor f_2 = (s \lor b \lor f) \land (s \lor b \lor f_1) \in P$, we get that $s \lor a \lor f \in P$ or $s \lor b \lor f \in P$ by Lemma 2.1 (1); hence $F \subseteq (P :_{\pounds} s \lor a)$ or $F \subseteq (P :_{\pounds} s \lor b)$.
- Case 2: $s \lor a \lor f_1 \in P$ and $s \lor b \lor f_1 \notin P$. On the contrary, assume that $s \lor a \lor f \notin P$ and $s \lor b \lor f \notin P$. Then $s \lor a \lor f_2 = (s \lor a \lor f) \land (s \lor a \lor f_1) \notin P$ by Lemma 2.1 (1); so $s \lor b \lor f_2 = (s \lor b \lor f) \land (s \lor b \lor f_1) \in P$ which is impossible by Lemma 2.1 (1). Thus $s \lor a \lor f \in P$ or $s \lor b \lor f \in P$ and so $F \subseteq (P :_{\pounds} s \lor a)$ or $F \subseteq P :_{\pounds} s \lor b$.
 - Case 3: $s \lor a \lor f_1 \notin P$ and $s \lor b \lor f_1 \in P$. This proof is similar to that in Case (2) and we omit it.
- $(2) \Rightarrow (1) \text{ Let } x,y,z \in \pounds \text{ such that } 1 \neq x \vee y \vee z \in P. \text{ Then } \{1\} \neq (x \vee y) \vee T(\{z\}) \subseteq P \text{ gives } s \vee x \vee y \in P \text{ or } T(\{z\}) \subseteq (P:_{\pounds} s \vee x) \text{ or } T(\{z\}) \subseteq (P:_{\pounds} s \vee y) \text{ by } (2) \text{ which implies that } s \vee x \vee y \in P \text{ or } s \vee x \vee z \in P \text{ or } s \vee y \vee z \in P, \text{ i.e. } (1) \text{ holds.}$
- **Lemma 3.15.** Let P be a filter of \pounds and S a join closed subset of \pounds disjoint with P. The following assertions are equivalent:
 - (1) P is a weakly S-2-absorbing filter of \pounds ;
- (2) There exists an $s \in S$ such that for any filters F, G of \pounds and $a \in \pounds$, if $\{1\} \neq a \lor (F \lor G) \subseteq P$, then $F \subseteq (P :_{\pounds} s \lor a)$ or $G \subseteq (P :_{\pounds} s \lor a)$ or $F \lor G \subseteq (P :_{\pounds} s)$.
- **Proof.** (1) \Rightarrow (2) Let P be a weakly S-2-absorbing filter of \pounds and assume that $s \in S$ satisfies weakly S-2-absorbing condition. Let F, G be filters of \pounds and $a \in \pounds$ such that $\{1\} \neq a \lor (F \lor G) \subseteq P$. Suppose that $(s \lor a) \lor F \not\subseteq P$. So $s \lor a \lor f \notin P$ for some $f \in F$. We claim that there exists $b \in F$ such that $(a \lor b) \lor G \neq \{1\}$ and $s \lor a \lor b \notin P$. Since $a \lor (F \lor G) \neq \{1\}$, we conclude that $(a \lor f_1) \lor G \neq \{1\}$ for some $f_1 \in F$. Suppose that $s \lor a \lor f_1 \notin P$ or $(a \lor f) \lor G \neq \{1\}$. If $s \lor a \lor f_1 \notin P$, then we put $b = f_1$ and so $s \lor a \lor b \notin P$ and $(a \lor b) \lor G \neq \{1\}$. If $(a \lor f) \lor G \neq \{1\}$, then we put b = f and so $s \lor a \lor b \notin P$ and $(a \lor b) \lor G \neq \{1\}$. Hence, by putting b = f or $b = f_1$, we get the result. Therefore, suppose that $s \lor a \lor f_1 \in P$ and $(a \lor f) \lor G = \{1\}$. It follows that $\{1\} \neq a \lor (f \land f_1) \lor G = ((a \lor f_1) \land (a \lor f)) \lor G = (a \lor f_1) \lor G \subseteq P$ and $(s \lor a) \lor (f \land f_1) = (s \lor a \lor f_1) \land (s \lor a \lor f) \notin P$ by Lemma 2.1 (1). So we find $b \in F$ such that $(a \lor b) \lor G \neq \{1\}$ and $s \lor a \lor b \notin P$.
- Since $\{1\} \neq (a \lor b) \lor G \subseteq a \lor (F \lor G) \subseteq P$ and $s \lor a \lor b \notin P$, we obtain $G \subseteq (P:_{\pounds} s \lor a)$ or $G \subseteq (P:_{\pounds} s \lor b)$ by Lemma 3.14. If $G \subseteq (P:_{\pounds} s \lor a)$, then we are done. So we may assume that $G \nsubseteq (P:_{\pounds} s \lor a)$ and so $G \subseteq (P:_{\pounds} s \lor b)$. Let $c \in F$. If $(a \lor c) \lor G \neq \{1\}$, then by Lemma 3.14, $c \in (P:_{\pounds} s \lor a)$ or $c \in (P:_{\pounds} s \lor G)$ since $(s \lor a) \lor G \nsubseteq P$; hence $F \subseteq (P:_{\pounds} s \lor a)$ or $F \lor G \subseteq (P:_{\pounds} s)$, i.e. (2) holds. If $(a \lor c) \lor G = \{1\}$, then $\{1\} \neq a \lor (b \land c) \lor G = ((a \lor b) \land (a \lor c)) \lor G = (a \lor b) \lor G \subseteq P$. Now, Lemma 3.14 gives $(s \lor a) \lor (b \land c) \in P$ or $s \lor (b \land c) \lor G \subseteq P$ which implies that $b \land c \in (P:_{\pounds} s \lor a)$ or $b \land c \in (P:_{\pounds} s \lor G)$. Now assume that $b \land c \in (P:_{\pounds} s \lor a)$ and $b \land c \notin (P:_{\pounds} s \lor G)$. Consider $\{1\} \neq a \lor (b \land c) \lor G = ((a \lor b) \land (a \lor c)) \lor G = (a \lor b) \lor G \subseteq P$. By Lemma 3.14, $(s \lor a \lor b) \land (s \lor a \lor c) = (s \lor a) \lor (b \land c) \in P$ or $s \lor (b \land c) \lor G \subseteq P$ since $(s \lor a) \lor G \nsubseteq P$; hence $s \lor a \lor b \in P$ by Lemma 2.1 (1) or $b \land c \in (P:_{\pounds} s \lor G)$, a contradiction. Thus $b \land c \in (P:_{\pounds} s \lor G)$ and so $s \lor (b \land c) \lor G \subseteq P$. Let $g \in G$. Then $s \lor (b \land c) \lor g = (s \lor b \lor g) \land (s \lor c \lor g) \in P$ gives $s \lor c \lor g \in P$ by lemma 2.1 (1) and so $c \in (P:_{\pounds} s \lor G)$ which implies that $F \subseteq (P:_{\pounds} s \lor G)$. Therefore, $F \lor G \subseteq (P:_{\pounds} s)$.
- $(2) \Rightarrow (1) \text{ Let } a,b,c \in \pounds \text{ such that } 1 \neq a \vee b \vee c \in P. \text{ Set } F = T(\{b\}) \text{ and } G = T(\{c\}). \text{ Then } \{1\} \neq a \vee (F \vee G) \subseteq P \text{ gives } s \vee a \vee b \in (s \vee a) \vee F \subseteq P \text{ or } s \vee a \vee c \in (s \vee a) \vee G \subseteq P \text{ or } s \vee b \vee c \in s \vee (F \vee G) \subseteq P \text{ by } (2), \text{ as required.}$

Proposition 3.16. Let P be a filter of \mathcal{L} and S a join closed subset of \mathcal{L} disjoint with P. The following assertions are equivalent:

- (1) P is a weakly S-2-absorbing filter of \mathcal{L} ;
- (2) There exists an $s \in S$ such that for any filters F, G, K of \pounds , if $\{1\} \neq F \vee G \vee K \subseteq P$, then $F \vee G \subseteq (P :_{\pounds} s)$ or $F \vee K \subseteq (P :_{\pounds} s)$ or $G \vee K \subseteq (P :_{\pounds} s)$.
- **Proof.** (1) ⇒ (2) Let P be a weakly S-2-absorbing filter of \pounds and assume that $s \in S$ satisfies weakly S-2-absorbing condition. Let F, G, K be filters of \pounds such that $\{1\} \neq F \vee G \vee K \subseteq P$; so $\{\{1\} \neq g \vee (F \vee K) \subseteq P \text{ for some } g \in G.$ By Lemma 3.15, $(s \vee g) \vee F \subseteq P \text{ or } (s \vee g) \vee G \subseteq P \text{ or } s \vee (F \vee K) \subseteq P.$ If $s \vee (F \vee K) \subseteq P$, then we are done and so assume that $s \vee (F \vee K) \not\subseteq P$. Therefore, we have either $(s \vee g) \vee F \subseteq P \text{ or } (s \vee g) \vee K \subseteq P.$ We claim that either $s \vee (F \vee G) \subseteq P \text{ or } s \vee (G \vee K) \subseteq P.$ Let $g_1 \in G$. If $\{1\} \neq g_1 \vee (F \vee K) \subseteq P$, then by Lemma 3.15, $(s \vee g_1) \vee F \subseteq P \text{ or } (s \vee g_1) \vee K \subseteq P \text{ since } s \vee (F \vee K) \not\subseteq P \text{ which implies that } g_1 \in (P :_{\pounds} s \vee F) \text{ or } g_1 \in (P :_{\pounds} s \vee K).$ It follows that $F \vee G \subseteq (P :_{\pounds} s) \text{ or } G \vee K \subseteq (P :_{\pounds} s), \text{ i.e. we get the claim. Now let } g_1 \vee (F \vee K) = \{1\}.$ Since $\{1\} \neq (g \wedge g_1) \vee (F \vee K) = (g_1 \vee (F \vee K)) \wedge (g \vee (F \vee K)) = g \vee (F \vee K) \subseteq P, \text{ we conclude that } s \vee (g \wedge g_1) \vee F \subseteq P \text{ or } s \vee (g \wedge g_1) \vee K \subseteq P \text{ by Lemma 3.15.}$, we split the proof into four cases.
 - Case 1: $(s \vee g) \vee F \subseteq P$ and $s \vee (g \wedge g_1) \vee F \subseteq P$.

Since $s \lor (g \land g_1) \lor f = (s \lor g \lor f) \land (s \lor g_1 \lor f) \in P$ for all $f \in F$, we conclude that $s \lor g_1 \lor f \in P$ by Lemma 2.1 (1) which implies that $(s \lor g_1) \lor F \subseteq P$; hence $s \lor (F \lor G) \subseteq P$.

Case 2: $(s \vee g) \vee K \subseteq P$ and $s \vee (g \wedge g_1) \vee K \subseteq P$.

Since $s \lor (g \land g_1) \lor k = (s \lor g \lor k) \land (s \lor g_1 \lor k) \in P$ for all $k \in K$, we conclude that $s \lor g_1 \lor k \in P$ by Lemma 2.1 (1) which implies that $(s \lor g_1) \lor K \subseteq P$; hence $s \lor (G \lor K) \subseteq P$.

Case 3: $(s \lor g) \lor F \subseteq P$, $(s \lor g) \lor K \not\subseteq P$, $s \lor (g \land g_1) \lor K \subseteq P$ and $s \lor (g \land g_1) \lor F \not\subseteq P$.

Since $(s \vee g) \vee K \not\subseteq P$, we conclude that $s \vee g \vee k \notin P$ for some $k \in K$. Then by the hypothesis, $s \vee (g \wedge g_1) \vee k = (s \vee g \vee k) \wedge (s \vee g_1 \vee k) \in P$ which implies that $s \vee g \vee k \in P$ by Lemma 2.1 (1) and this is not possible. Hence since $(s \vee g) \vee F \subseteq P$ or $(s \vee g) \vee K \subseteq P$ or $s \vee (g \wedge g_1) \vee F \subseteq P$ or $s \vee (g \wedge g_1) \vee K \subseteq P$, there must be any one of the following holds:

- (i) $(s \lor g) \lor K \subseteq P$ and $s \lor (g \land g_1) \lor K \subseteq P$ and $s \lor (g \land g_1) \lor F \nsubseteq P$, then $g_1 \in (P :_{\pounds} s \lor K)$; hence $G \lor K \subseteq (P :_{\pounds} s)$.
- (ii) $(s \vee g) \vee F \subseteq P$ and $(s \vee g) \vee K \not\subseteq P$ and $s \vee (g \wedge g_1) \vee F \subseteq P$, then $g_1 \in (P :_{\pounds} s \vee F)$; hence $G \vee F \subseteq (P :_{\pounds} s)$.
- Case 4: $s \vee (g \wedge g_1) \vee F \subseteq P$, $s \vee (g \wedge g_1) \vee K \not\subseteq P$, $(s \vee g) \vee K \subseteq P$ and $(s \vee g) \vee F \not\subseteq P$. By an argument like that in the Case (3), we get $g_1 \in (P :_{\pounds} s \vee F)$ or $g_1 \in (P :_{\pounds} s \vee K)$. Therefore $F \vee G \subseteq (P :_{\pounds} s)$ or $G \vee K \subseteq (P :_{\pounds} s)$.
- (2) \Rightarrow (1) Let $a, b, c \in \mathcal{L}$ such that $1 \neq a \lor b \lor c \in P$. Set $F = T(\{b\})$, $G = T(\{b\})$ and $K = T(\{c\})$. Then $\{1\} \neq F \lor G \lor K \subseteq P$ gives $s \lor a \lor b \in s \lor (F \lor G) \subseteq P$ or $s \lor a \lor c \in s \lor (F \lor K \subseteq P)$ or $s \lor b \lor c \in s \lor (G \lor K) \subseteq P$ by (2), as required.

The next theorem gives a more explicit description of the weakly S-2-absorbing filters of \mathcal{L} .

Theorem 3.17. Let P be a filter of \pounds and S a join closed subset of \pounds disjoint with P. The following assertions are equivalent:

- (1) P is a weakly S-2-absorbing filter of \mathcal{L} ;
- (2) There exists an $s \in S$ such that for any $a, b \in \mathcal{L}$, if $\{1\} \neq (a \lor b) \lor F \subseteq P$ for some filter F of \mathcal{L} , then $s \lor a \lor b \in P$ or $F \subseteq (P :_{\mathcal{L}} s \lor a)$ or $F \subseteq (P :_{\mathcal{L}} s \lor b)$.
- (3) There exists an $s \in S$ such that for any filters F, G of \pounds and $a \in \pounds$, if $\{1\} \neq a \lor (F \lor G) \subseteq P$, then $F \subseteq (P :_{\pounds} s \lor a)$ or $G \subseteq (P :_{\pounds} s \lor a)$ or $F \lor G \subseteq (P :_{\pounds} s)$.

(4) There exists an $s \in S$ such that for any filters F, G, K of \pounds , if $\{1\} \neq F \vee G \vee K \subseteq P$, then $F \vee G \subseteq (P :_{\pounds} s)$ or $F \vee K \subseteq (P :_{\pounds} s)$ or $G \vee K \subseteq (P :_{\pounds} s)$.

Proof. This is a direct consequence Lemma 3.14, Lemma 3.15 and Proposition 3.16.

4. Further results

We continue in this section with the investigation of the stability of weakly S-2-absorbing filters in various lattice-theoretic constructions.

Proposition 4.1. Let S be a join closed subset of \mathcal{L} and P a weakly S-2-absorbing filter of \mathcal{L} such that $P \cap S = \emptyset$. If Q is a filter of \mathcal{L} such that $Q \cap S \neq \emptyset$, then $P \vee Q$ is a weakly S-2-absorbing filter of \mathcal{L} .

Proof. Since $(P \lor Q) \cap S \subseteq P \cap S = \emptyset$, we conclude that $P \lor Q) \cap S = \emptyset$. Consider $t \in Q \cap S$. Let $a, b, c \in \mathcal{L}$ such that $1 \neq a \lor b \lor c \in P \lor Q \subseteq P$. Then there exists $s \in S$ such that $s \lor a \lor b \in P$ or $s \lor a \lor c \in P$ which gives $s \lor t \lor a \lor b \in P \lor Q$ or $s \lor t \lor a \lor c \in P \lor Q$ or $s \lor t \lor b \lor c \in P \lor Q$, where $s \lor t \in S$, i.e. $P \lor Q$ is a weakly S-2-absorbing filter of \mathcal{L} .

Proposition 4.2. Suppose that S is a join closed subset of \mathcal{L} . Then the following assertions are equivalent:

- (1) Every weakly S-2-absorbing filter of \mathcal{L} is prime;
- (2) \pounds is a \pounds -domain and every S-2-absorbing filter of \pounds is prime.
- **Proof.** (1) \Rightarrow (2) Since {1} is a weakly S-2-absorbing filter, we conclude that it is a prime filter by (1) which gives \pounds is a \pounds -domain. Finally, since every S-2-absorbing filter of \pounds is weakly S-2-absorbing, we have P is prime by (1).
- (2) \Rightarrow (1) Let P be a weakly S-2-absorbing filter of \pounds . It suffices to show that P is an S-2-absorbing filter. Let $a,b,c\in \pounds$ such that $a\vee b\vee c\in P$. If $a\vee b\vee c\neq 1$, then there exists $s\in S$ such that $s\vee a\vee b\in P$ or $s\vee a\vee c\in P$ or $s\vee b\vee c\in P$. If $a\vee b\vee c=1$, then a=1 or b=1 or c=1; so $s\vee a\vee b=1\in P$ or $s\vee a\vee c=1\in P$ or $s\vee b\vee c=1\in P$ for every $s\in S$. Therefore, every weakly S-2-absorbing filter of \pounds is prime by (2).

Theorem 4.3. Let $f: \mathcal{L} \to \mathcal{L}'$ be a lattice homomorphism such that f(1) = 1 and S a join closed subset of \mathcal{L} . The following hold:

- (1) Let \mathcal{L} be a complemented lattice. If f is a epimorphism and P is a weakly S-2-absorbing filter with $\operatorname{Ker}(f) \subseteq P$, then f(P) is a weakly f(S)-2-absorbing filter of \mathcal{L}' ;
- (2) If f is a monomorphism and P' is a weakly f(S)-2-absorbing filter of \mathcal{L}' , then $P = f^{-1}(P')$ is a weakly S-2-absorbing filter of \mathcal{L} .
- **Proof.** (1) Clearly, f(S) is a join closed subset of \pounds' . Let $c \in f(S) \cap f(P)$. Then c = f(p) = f(s) for some $p \in P$ and $s \in S$. By assumption, there exists $p' \in \pounds$ such that $p \vee p' = 1$ and $p \wedge p' = 0$ which gives $f(s \vee p') = f(p) \vee f(p') = 1$; hence $s \vee p' \in \operatorname{Ker}(f) \subseteq P$. Since $s = s \vee (p \wedge p') = (s \vee p') \wedge (s \vee p) \in P$, we conclude that $s \in S \cap P$, a contradiction. Thus $f(S) \cap f(P) = \emptyset$. Let $x, y, z \in \pounds'$ such that $1 \neq x \vee y \vee z \in f(P)$. Then there exist $a, b, c \in \pounds$ such that x = f(a), y = f(b), z = f(c) and $1 \neq f(a \vee b \vee c) = x \vee y \vee z \in f(P)$ (so $a \vee b \vee c \neq 1$) which implies that $f(a \vee b \vee c) = f(q)$ for some $q \in P$. By the hypothesis, $q \vee q' = 1$ and $q \wedge q' = 0$ for some $q' \in \pounds$. Since $f(a \vee b \vee c \vee q') = 1$, we conclude that $a \vee b \vee c \vee q' \in \operatorname{Ker}(f) \subseteq P$; hence $1 \neq a \vee b \vee c = (a \vee b \vee c) \vee (q \wedge q') = (a \vee b \vee c \vee q) \wedge (a \vee b \vee c \vee q') \in P$, as P is a filter. This implies that $s \vee a \vee b \in P$ or $s \vee a \vee c \in P$ or $s \vee b \vee c \in P$ for some $s \in S$. It means that $f(s) \vee x \vee y \in f(P)$ or $f(s) \vee x \vee z \in f(P)$ or $f(s) \vee x \vee z \in f(P)$. Therefore, f(P) is a weakly f(S)-2-absorbing filter of \pounds' .

(2) By assumption, there exists $s \in S$ such that for all $x, y, z \in \mathcal{L}'$, $x \lor y \lor z \in P'$ implies $f(s) \lor x \lor y \in P'$ or $f(s) \lor x \lor z \in P'$ or $f(s) \lor y \lor z \in P'$. Clearly, $P \cap S = \emptyset$. Let $a, b, c \in \mathcal{L}$ such that $1 \neq a \lor b \lor c \in P$. Since $\text{Ker}(f) = \{1\}$ by Lemma 2.3 (2), we conclude that $1 \neq f(a \lor b \lor c) = f(a) \lor f(b) \lor f(c) \in P'$; so $f(s) \lor f(a) \lor f(b) = f(s \lor a \lor b) \in P'$ or $f(s) \lor f(a) \lor f(c) = f(s \lor a \lor c) \in P'$ or $f(s) \lor f(b) \lor f(c) = f(s \lor b \lor c) \in P'$. Hence, $s \lor a \lor b \in P$ or $s \lor a \lor c \in P$ or $s \lor b \lor c \in P$, and so $P = f^{-1}(P')$ is a weakly S-2-absorbing filter of \mathcal{L} .

Corollary 4.4. Let S be a join closed subset of £. If £ is a sublattice of £' and G' is a weakly S-2-absorbing filter of £', then $G' \cap \pounds$ is a weakly S-2-absorbing filter of £.

Proof. It suffices to apply Theorem 4.3 (2) to the natural injection $\iota : \mathcal{L} \to \mathcal{L}'$ since $\iota^{-1}(G') = G' \cap \mathcal{L}$.

Let F be a filter of \mathcal{L} and S a join closed subset of \mathcal{L} disjoint with F. It is clear that $S_Q = \{s \land F : s \in S\}$ is a join closed subset of \mathcal{L}/F .

Theorem 4.5. Let S be a join closed subset of £, F and G are two filters of £ with $F \subseteq G$. The following hold:

- (1) Let \mathcal{L} be a complemented lattice. If G is a weakly S-2-absorbing filter of \mathcal{L} , then G/F is a weakly S_Q -2-absorbing filter of \mathcal{L}/F ;
- (2) If G/F is a weakly S_Q -2-absorbing filter of \pounds/F and F is a weakly S-2-absorbing filter of \pounds , then G is a weakly S-2-absorbing filter of \pounds .
- **Proof.** (1) Assume that $f: \mathcal{L} \to \mathcal{L}/F$ such that $f(a) = a \wedge F$ and let $x, y \in \mathcal{L}$. Then $f(x \vee y) = (x \vee y) \wedge F = (x \wedge F) \vee_Q (y \wedge F) = f(x) \vee_Q f(y)$. Similarly, $f(x \wedge y) = f(x) \wedge_Q f(y)$. So f is a lattice homomorphism from \mathcal{L} onto \mathcal{L}/F and $f(1) = 1 \wedge F = 1_{\mathcal{L}/F}$. Suppose that G is a weakly S-2-absorbing filter of \mathcal{L} . Since $\text{Ker}(f) = F \subseteq G$ and f is onto, we conclude that f(G) = G/F (see [8, Lemma 3.4]) is a S_O -2-absorbing filter of \mathcal{L}/F by Theorem 4.3 (1).
- (2) Let $a,b,c\in\mathcal{L}$ such that $1\neq a\lor b\lor c\in G$. Then $(a\land F)\lor_Q(b\land F)\lor_Q(c\land F)=(a\lor b\lor c)\land F\in G/F$. If $(a\lor b\lor c)\land F\neq 1_{\mathcal{L}/F}=1\land F$, then G/F is a weakly S_Q -2-absorbing gives there exists $s\in S$ such that $(s\land F)\lor_Q(a\land F)\lor_Q(b\land F)=(s\lor a\lor b)\land F\in G/F$ or $(s\land F)\lor_Q(a\land F)\lor_Q(c\land F)=(s\lor a\lor c)\land F\in G/F$ or $(s\land F)\lor_Q(b\land F)\lor_Q(c\land F)=(s\lor b\lor c)\land F\in G/F$ which implies that $s\lor a\lor b)\in G$ or $s\lor a\lor c\in G$ or $s\lor b\lor c\in G$. If $(a\lor b\lor c)\land F=1\land F$, then there exist $f_1,f_2\in F$ such that $(a\lor b\lor c)\land f_1=1\land f_2=f_2\in F$; so $1\neq a\lor b\lor c\in F$ by Lemma 2.1 (1) which gives there is an element $t\in S$ such that $t\lor a\lor b\in F\subseteq G$ or $t\lor a\lor c\in F\subseteq G$ or $t\lor b\lor c\in F\subseteq G$. This shows that G is a weakly S-2-absorbing filter of \mathcal{L} . \square
- **Theorem 4.6.** Let $\mathcal{L} = \mathcal{L}_1 \times \mathcal{L}_2$ be a decomposable lattice and $S = S_1 \times S_2$, where S_i is a join closed subset of \mathcal{L}_i . Suppose that $P = P_1 \times P_2$, where $P_1 \neq \{1\}$ is a filter of \mathcal{L}_1 and $P_2 \neq \{1\}$ is a filter of \mathcal{L}_2 . Then the following assertions are equivalent:
 - (1) P is a weakly S-2-absorbing filter of \mathcal{L} ;
- (2) P_1 is a weakly S_1 -2-absorbing filter of \mathcal{L}_1 and $P_2 \cap S_2 \neq \emptyset$ or P_2 is a weakly S_2 -2-absorbing filter of \mathcal{L}_2 and $P_1 \cap S_1 \neq \emptyset$ or P_1 is a weakly S_1 -prime filter of \mathcal{L}_1 and P_2 is a weakly S_2 -prime filter of \mathcal{L}_2 .
- **Proof.** (1) \Rightarrow (2) Let P be a weakly S-2-absorbing filter of \pounds and assume that $s = (s_1, s_2) \in S$ satisfies weakly S-2-absorbing condition. As $P \cap S = \emptyset$, we get either $P_1 \cap S_1 = \emptyset$ or $P_2 \cap S_2 = \emptyset$. If $P_1 \cap S_1 \neq \emptyset$, we will show that P_2 is a weakly S_2 -2-absorbing filter of \pounds_2 . Let $1 \neq a \lor b \lor c \in P_2$ for some $a, b, c \in \pounds_2$. Then $(1,1) \neq (1,a) \lor_c (1,b) \lor_c (1,c) = (1,a \lor b \lor c) \in P$ gives $s \lor_c (1,a) \lor_c (1,b) = (1,s_2 \lor a \lor b) \in P$ or $s \lor_c (1,a) \lor_c (1,c) = (1,s_2 \lor a \lor c) \in P$ or $s \lor_c (1,b) \lor_c (1,c) = (1,s_2 \lor b \lor c) \in P$. This shows that $s_2 \lor a \lor b \in P_2$ or $s_2 \lor a \lor c \in P_2$ or $s_2 \lor b \lor c \in P_2$. Hence, P_2 is a weakly S_2 -2-absorbing filter of \pounds_2 . Similarly, if $S_2 \cap P_2 \neq \emptyset$, then P_1 is a weakly S_1 -2-absorbing filter of \pounds_1 .

Now, assume that $S_1 \cap P_1 = \emptyset = S_2 \cap P_2$. We will show that P_1 is a weakly S_1 -prime filter of \mathcal{L}_1 and P_2 is a weakly S_2 -prime filter of \mathcal{L}_2 . Suppose that P_1 is not a weakly S_1 -prime filter of \mathcal{L}_1 . Then there exist $x, y \in \mathcal{L}_1$ such that $1 \neq x \vee y \in P_1$ but $s_1 \vee x, s_1 \vee y \notin P_1$. Since $S_2 \cap P_2 = \emptyset$, we conclude that

 $s_2 \notin P_2$. Then $(1,1) \neq (x,0) \vee_c (0,1) \vee_c (y,s_2) = (x \vee y,1) \in P$ gives $s \vee_c (x,0) \vee_c (0,1) = (s_1 \vee x,1) \in P$ or $s \vee_c (x,0) \vee_c (y,s_2) = (s_1 \vee x \vee y,s_2) \in P$ or $s \vee_c (0,1) \vee_c (y,s_2) = (s_1 \vee y,1) \in P$; so $s_1 \vee x \in P_1$ or $s_2 \in P_2$ or $s_1 \vee y \in P_1$ which is a contradiction. Therefor, P_1 is a weakly S_1 -prime filter of \pounds_2 . Similarly, P_2 is a weakly S_2 -prime filter of \pounds_2 .

 $(2) \Rightarrow (1) \text{ Let } P_1 \cap S_1 \neq \emptyset \text{ and } P_2 \text{ be a weakly } S_2\text{-}2\text{-absorbing filter of } \pounds_2. \text{ At first, note that } P \cap S = \emptyset. \text{ Let } (1,1) \neq (a,x) \vee_c (b,y) \vee_c (c,z) = (a \vee b \vee c, x \vee y \vee z) \in P \text{ for some } (a,x), (b,y), (c,z) \in \pounds. \text{ Since } P_1 \cap S_1 \neq \emptyset, \text{ there exists } s_1 \in S_1 \text{ such that } s_1 \vee v \in P_1 \text{ for all } v \in \pounds_1. \text{ Also, there exists } s_2 \in S_2 \text{ satisfying } P_2 \text{ to be a weakly } S_2\text{-}2\text{-absorbing filter of } \pounds_2. \text{ Now, put } s = (s_1,s_2) \in S. \text{ If } x \vee y \vee z \neq 1, \text{ then } P_2 \text{ is a weakly } S_2\text{-}2\text{-absorbing filter gives } s_2 \vee x \vee y \in P_2 \text{ or } s_2 \vee x \vee z \in P_2 \text{ or } s_2 \vee y \vee z \in P_2. \text{ This shows that } s \vee_c (a,x) \vee_c (b,y) \in P \text{ or } s \vee_c (a,x) \vee_c (c,z) \in P \text{ or } s \vee_c (c,z) \vee_c (b,y) \in P. \text{ Now, assume that } x \vee y \vee z = 1. \text{ Since } P_2 \neq \{1\}, \text{ there exists } p_2 \in P_2 \text{ such that } p_2 \neq 1. \text{ As } 1 \neq (x \wedge p_2) \vee_c (y \wedge p_2) \vee_c (z \wedge p_2) = p_2 \in P_2, \text{ we conclude that } s_2 \vee (x \wedge p_2) \vee_c (y \wedge p_2) = (s_2 \vee p_2) \wedge (s_2 \vee x \vee y) \in P_2 \text{ or } s_2 \vee (x \wedge p_2) \vee_c (z \wedge p_2) = (s_2 \vee p_2) \wedge (s_2 \vee x \vee z) \in P_2 \text{ or } s_2 \vee x \vee y \in P$

Now, suppose that for each i=1,2, P_i is a weakly S_i -prime filter of \pounds_i . Let $(1,1) \neq (a,x) \vee_c (b,y) \vee_c (c,z) = (a \vee b \vee c, x \vee y \vee z) \in P$ for some $(a,x), (b,y), (c,z) \in \pounds$. If $1 \neq a \vee b \vee c \in P_1$, then there exists a fixed $s_1 \in S_1$ such that $s_1 \vee a \in P_1$ or $s_1 \vee b \in P_1$ or $s_1 \vee c \in P_1$. So Suppose that $a \vee b \vee c = 1$. Consider $1 \neq p_1 \in P_1$. Then $1 \neq (p_1 \wedge a) \vee (p_1 \wedge b) \vee (p_1 \wedge c) = p_1 \in P_1$ gives $s_1 \vee (a \wedge p_1) = (s_1 \vee p_1) \wedge (s_1 \vee a) \in P_1$ or $s_1 \vee (b \wedge p_1) = (s_1 \vee p_1) \wedge (s_1 \vee b) \in P_1$ or $s_1 \vee (c \wedge p_1) = (s_1 \vee p_1) \wedge (s_1 \vee c) \in P_1$ which implies that $s_1 \vee a \in P_1$ or $s_1 \vee b \in P_1$ or $s_1 \vee c \in P_1$ by Lemma 2.1 (1). Similarly, there exists $s_2 \in S_2$ such that $s_2 \vee x \in P_2$ or $s_2 \vee y \in P_2$ or $s_2 \vee z \in P_2$. Put $s = (s_1, s_2) \in S$. Without loss of generality, we may assume that $s_1 \vee a \in P_1$ and $s_2 \vee z \in P_2$. Then $s \vee_c (a, x) \vee_c (c, z) \in P$. Therefore, P is an S-2-absorbing filter of \pounds .

Acknowledgment: The author thanks the referees for careful reading on the first draft of the manuscript.

References

- [1] D. D. Anderson, E. Smith, Weakly prime ideals, Houston J. Math. 29 (4) (2003) 831–840.
- [2] F. A. A. Almahdi, E. M. Bouba, M. Tamekkante, On weakly S-prime ideals of commutative rings, An. St. Univ. Ovidius Constanta 29 (2) (2021) 173–186.
- [3] G. Birkhoff, Lattice theory, Amer. Math. Soc. (1973).
- [4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (3) (2007) 417–429.
- [5] G. Călugăreanu, Lattice concepts of module theory, Kluwer Academic Publishers, (2000).
- [6] S. Ebrahimi Atani, M. Sedghi Shanbeh Bazari, On 2-absorbing filters of lattices, Discuss. Math. Gen. Algebra Appl. 36 (2016) 157–168.
- [7] S. Ebrahimi Atani, F. Farzalipour, On weakly primary ideals, Georgian Math. J. 12 (2005) 423–429.
- [8] S. Ebrahimi Atani, G-Supplemented property in the lattices, Mathematica Bohemica 147 (4) (2022) 525–545.
- [9] S. Ebrahimi Atani, F. Farzalipour, On weakly pime submodules, Tamkang J. Math. 38 (2007) 247–252
- [10] S. Ebrahimi Atani, Note on weakly 1-absorbing prime filters, Bull. Int. Math. Virtual Inst. 13 (3) (2023) 465–478.
- [11] S. Ebrahimi Atani, S-prime property in lattices, Mathematica, 66/89(2) (2024) 168—187.

- [12] A. Hamed, A. Malek, S-prime ideals of a commutative ring, Beitr. Algebra Geom. (2020) 533-542.
- [13] O. A. Naji, On S-2-absorbing primary submodules, Filomat 35 (5) (2021) 1477–1487.
- [14] E. S. Sevim, T. Arabaci, Ü. Tekir and S. Koc, On S-prime submodules, Turk. J. Math. 43(2) (2019) 1036–1046.
- [15] G. Ulucak, Ü. Tekir and S. Koc, On S-2-absorbing submodules and vn-regular modules, An. St. Univ. Ovidius Constanta 28 (2) (2020) 239–257.
- [16] G. N. Sudharshana, On weakly S-2-absorbing submodules, Int. J. Anal. Appl. (2023) 48.