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Abstract: Let £ be a bounded distributive lattice and S a join closed subset of £. Following the concept of
weakly S-2-absorbing submodules, we define weakly S-2-absorbing filters of £. We will make an
intensive investigate the basic properties and possible structures of these filters.
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1. Introduction

All lattices considered in this paper are assumed to have a least element denoted by 0 and a greatest
element denoted by 1, in other words they are bounded. Our objective in this paper is to extend the
notion of weakly S-2-absorbing property in modules theory to weakly S-2-absorbing property in lattice
theory. Indeed, we are interested in investigating weakly S-2-absorbing filters to use other notions of
weakly S-2-absorbing and associate which exist in the literature as laid forth in [16].

Prime ideals and submodules have a significant place in ring and module theory. Several generaliza-
tions of these concepts have been investigated extensively by many authors see, for example, [1, 2, 4, 6,
7,9, 10, 11, 12, 13, 14, 15, 16]. In 2003, Anderson and Smith in [1] defined weakly prime ideals which
is a generalization of prime ideals (also see [7, 9]). A proper ideal P of a ring R is said to be a weakly
prime if 0 # zy € P for each z,y € R implies either x € P or y € P. Badawi generalized the concept
of prime ideals in [4]. We recall from [4] that a proper ideal I of a commutative ring R is said to be a
2-absorbing ideal if whenever abc € I for a,b,c € R, then ab € I or ac € I or bc € I (also see [6]). In
2019, Hamed and Malek [12] introduced the notion of an S-prime ideal, i.e. let S C R be a multiplicative
set and I an ideal of R disjoint from S. We say that I is S-prime if there exists an s € S such that for all
a,b € R with ab € I, we have sa € I or sb € I (also see [14]). Almahdi et. al. [2] introduced the notion
of a weakly S-prime ideal as follows: We say that I is a weakly S-prime ideal of R if there is an element
s € S such that for all z,y € Rif 0 # zy € I, then xs € I or ys € I.

Shahabaddin Ebrahimi Atani; Department of Pure Mathematics, Faculty of Mathematical Sciences, University
of Guilan, Rasht (email: ebrahimi@guilan.ac.ir).

https://doi.org/10.13069/jacodesmath.v12i3.318 ISSN 2148-838X


https://orcid.org/0000-0003-0568-9452

S. Ebrahimi Atani / J. Algebra Comb. Discrete Appl. 12(3) (2025) 237-248

In 2020, Ulucak, Tekir and Koc [15] introduced the notion of an S-2-absorbing submodules, i.e. let
S C R be a multiplicative set and P a submodule of an R-module M with SN (P :g M) = (. We say
that P is an S-2-absorbing submodule if there exists an element s € S and whenever abm € P for some
a,b € R and m € M, then sab € (P :g M) or sam € P or sbm € P. In 2021, Naji [13] introduced
the notion of an S-2-absorbing primary submodules, i.e. let S C R be a multiplicative set and P a
submodule of an R-module M with SN (P :g M) = (). We say that P is an S-2-absorbing primary
submodule if there exists an element s € S and whenever abm € P for some a,b € R and m € M, then
sab € \/(P :g M) or sam € P or sbm € P. In 2023, Sudharshana [16] introduced the notion of a weakly
S-2-absorbing submodules, i.e. let S C R be a multiplicative set and P a submodule of an R-module M
with SN (P :g M) = (). We say that P is a weakly S-2-absorbing submodule if there exists an element
s € S and whenever 0 # abm € P for some a,b € R and m € M, then sab € (P :g M) or sam € P or
sbm € P.

Let £ be a bounded distributive lattice. We say that a subset S C £ is join closed if 0 € S and
s1V sg € S for all 51,59 € S (if P is a prime filter of £, then £\ P is a join closed subset of £). Among
many results in this paper, the first, preliminaries section contains elementary observations needed later
on. Section 3 is dedicated to the investigation of the some basic properties of weakly S-2-absorbing
filters. At first, we give the definition of weakly S-2-absorbing filters (Definition 3.1) and provide an
example (Example 3.4) of a weakly S-2-absorbing filter of £ that is not a weakly 2-absorbing filter. It is
shown (Theorem 3.7) that if S is a join closed subset of £, then the intersection of two weakly S-prime
filter is a weakly S-2-absorbing filter. We provides some condition under which a weakly S-2-absorbing
filter is S-2-absorbing (see Theorem 3.9). Also, in Theorem 3.12, we give two other characterizations of
weakly S-2-absorbing filters. The rest of this section, we investigate a more explicit description of the
weakly S-2-absorbing filters of £ (see Lemma 3.14, Lemma 3.15, Proposition 3.16 and Theorem 3.17).
We continue in Section 4 with the investigation of the stability of weakly S-2-absorbing filters in various
lattice-theoretic constructions. Indeed, we investigate the behavior of weakly S-2-absorbing filters under
homomorphism, in factor lattices and in cartesian products of lattices (see Theorem 4.3, Theorem 4.5
and Theorem 4.6).

2. Preliminaries

A poset (£,<) is a lattice if sup{a,b} = a V b and inf{a,b} = a A b exist for all a,b € £ (and call
A the meet and V the join). A lattice £ is complete when each of its subsets X has a join and a meet
in £. Setting X = £, we see that any non-void complete lattice contains a least element 0 and greatest
element 1 (in this case, we say that £ is a lattice with 0 and 1). A lattice £ is called a distributive lattice
if (avVb)Ac= (anc)V(bAc) forall a,b,cin £ (equivalently, £ is distributive if (a Ab)Ve = (aVc)A(bVc)
for all a,b,cin £). A non-empty subset F of a lattice £ is called a filter, if fora € F, b € £, a < b implies
be F,and x Ay € F for all z,y € F (so if £ is a lattice with 1, then 1 € F and {1} is a filter of £). A
proper filter F' of £ is called prime if tVy € F, then x € F or y € F. A proper filter F' of £ is said to be
mazximal if G is a filter in £ with F ; G, then G = £. The intersection of all filters containing a given
subset A of £ is the filter generated by it, is denoted by T'(A). A filter F is called finitely generated if
there is a finite subset A of F' such that FF = T'(A). A proper filter F of a lattice £ is called a 2-absorbing
(resp. weakly 2-absorbing) filter if whenever a,b,c € £ and aVbVc € F (resp. 1 #aVbVc € F), then
avVbe ForaVece ForbVceF. Let P be a filter of £ and S a join closed subset of £ disjoint with
S. We say that P is an S-prime (resp. weakly S-prime) filter of £ if there is an element s € S such that
forall x,y e £ifxVy e P (resp. 1l ZaxVy € P),thenaxVse PoryVse P. Afilter P is said to be
S-2-absorbing if PN .S = ) and there exists a fixed s € S such that for any z,y,2z € £ withzVyVz € P,
then sVaVye PorsVaVzePorsVyVzeP.

A lattice £ with 1 is called £-domain if aVb=1 (a,b € £),thena=1o0r b=1 (so £ is £-domain
if and only if {1} is a prime filter of £). If x € £, then a complement of x in £ is an element y € £ such
that tVy =1 and z Ay = 0. The lattice £ is complemented if every element of £ has a complement in
£. If £ and £’ are lattices, then a lattice homomorphism f : £ — £’ is a map from £ to £’ satisfying
flevy) = f(x)V f(y) and f(x Ay) = f(x) A f(y) for x,y € £. First we need the following lemmas
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proved in [3, 5, 6, 8, 10].
Lemma 2.1. Let £ be a lattice.

(1) A non-empty subset F' of £ is a filter of £ if and only if tVz € F andx Ny € F for allz,y € F,
z € £. Moreover, sincex =xV (xAy), y=yV (xAy) and F is a filter, x Ny € F gives x,y € F for all
z,y € £.

(2) Let A be an arbitrary non-empty subset of £. Then
TA) ={zetf: axNasAN---Na, <z for somea; € A (1<i<n)}

Moreover, if F is a filter and A is a subset of £ with ACF, then T(A) CF, T(F)=F and T(T(A)) =
T(A)

(3) If {Fi}ica is a chain of filters of £, then |J;c o Fi is a filter of £.
Lemma 2.2. Let F,G be filters of £ and x € £. The following hold:

(1) FVG={aVvb:ac F,be G} andxV F ={aVy:yec F} are filters of £ with FVG =FNQG.

(2) If £ is distributive, then FAG ={aAb:a € F,be G} is a filter of £ with F,GCFAG

(8) If £ is distributive, F,G are filters of £ andy € £, then (G:p F)={x € £:2VF C G} and
(F:eTHy}))=(F:zy)={a€ £:aVye F} are filters of £.

(4) If £ is distributive, G, Fy, Fy are filters of £, then GV (Fy A Fy) = (GV F1) A (G V Fy).

Lemma 2.3. [11, Lemma 3.13] Let £1 and £5 be lattices and f : £1 — £2 be a lattice homomorphism
such that f(1) = 1. The following hold:

(1) Ker(f) ={x € £1: f(z) =1} is a filter of £1;
(2) If f is injective, then Ker(f) = {1};
(3) If £1 is a complemented lattice, then f is injective if and only if Ker(f) = {1}.

set up a partial order <. on £ as follows: for each z = (x1,x2, - ,Zpn),y = (Yy1,Y2, - ,Yn) € £, we write
x <.y if and only if z; <; y; for each i € {1,2,--- ,n}. The following notation below will be kept in this
paper: It is straightforward to check that (£, <.) is a lattice with 2 V. y = (x1 Vy1,22 VY2, ,Zn V Yn)
and z A.y = (1 Ay1,- -, Zn Ayn). In this case, we say that £ is a decomposable lattice.

Assume that (£1,<1),(£2,<2), -, (£n, <p) are lattices (n > 2) and let £ = £1 X Lo x---x£,. We

Quotient lattices are determined by equivalence relations rather than by ideals as in the ring case. If
F is a filter of a lattice (£, <), we define a relation on £, given by © ~ y if and only if there exist a,b € F
satisfying © A a = y A b. Then ~ is an equivalence relation on £, and we denote the equivalence class of
a by a A F and these collection of all equivalence classes by £/F. We set up a partial order <g on £/F
as follows: for each a A F,bAF € £/F, we write a A F <g bA F if and only if a < b. The following
notation below will be kept in this paper: It is straightforward to check that (£/F, <) is a lattice with
(aNF)Vg(bAF)=(aVb)AF and (a AF)Ag (bAF) = (aAb)AF for all elements aANF,bAF € £/F.
Note that e AF' = F = 1A F if and only if e € F (see |8, Remark 4.2 and Lemma 4.3]).

3. Characterization of weakly S-2-absorbing filters

In this section, we collect some basic properties concerning weakly S-2-absorbing filters. We introduce
the reader the following definition.

Definition 3.1. Let P be a filter of £ and S a join closed subset of £. A filter P is said to be weakly S-
2-absorbing if PN.S = () and there exists a fived s € S such that for any x,y,z € £ with 1 #xVyVz € P,
then sVaxVye P orsvVeVzePorsVyVzeP.

239
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Example 3.2. (1) A weakly 2-absorbing filter P of £ is weakly S-2-absorbing for each join closed subset
S of £ such that SN P = .

(2) If S = {0}, then the weakly 2-absorbing and the weakly S-2-absorbing filters of £ are the same.

(8) It is clear that every S-2-absorbing filter is a weakly S-2-absorbing filter. Since the filter {1} is
(by definition) a weakly S-2-absorbing filter of any lattice, hence the converse is not true in general.

(4) Every weakly S-prime filter is a weakly S-2-absorbing filter. Indeed, let P be an S-prime filter
of £ and a,b,c € £ such that 1 # aV bV c € P. Then there exists s € S such that sV a € P (so
sVaVbsVaVceP, as P is a filter) or sVbVc € P, as needed.

Example 3.3. Let £1 = {0,a,b,¢,d,1} be a lattice with the relations 0 < a <d <1,0<b<d <1,
0<c<landaNb=aANc=dAc=cANb=0. Suppose that £ = £1 x £1, P = {b,d, 1} x {1} and
S ={0,c} x{0,c}; so P is a filter of £ with PNS = 0. Then P is an weakly S-2-absorbing filter. Indeed,
let (1,1) # (a1,b1) Ve (az2,b2) Ve (as,b3) € P for some (a1,b1), (a2,b2), (a3, b3) € £. Then (c,c) € S,
b1 VbaVbs =1 and a; Vas Vas € {b,d}. Now consider the following two cases.

Case 1: There exists i € {1,2,3} such that b; = 1, say by = 1. If a1 Vas V az = b and there
exists i € {1,2,3} such that a; = 0, say a; = 0, then either (c,c) V¢ (a1,b1) Ve (a2,b2) = (1,1) € P or
(¢,¢) Ve (a1,b1) Ve (as,b3) = (1,1) € P. So we may assume that a1,as,as are non-zero elements. Then
(¢,¢) Ve (a1,b1) Ve (az,b2) = (1,1) € P. Similarly, for a; Vo Vag = d.

Case 2: by # 1,by # 1 and bs # 1. Then there exists i € {1,2,3} such that b; = ¢, say by = ¢
and either by € {a,b,d} or by € {a,b,d}. Let by = ¢ and bs € {a,b,d}. If a; Vas Vaz =b and a; =0,
then (c,c) Ve (a1,b1) Ve (az2,b2) = (1,1) € P or (¢,c) Ve (a1,b1) Ve (as,b3) = (1,1) € P. Ifa; # 0, then
(¢,¢) Ve (a1,b1) Ve (ag, b2) = (1,1) € P. Similarly, for by = ¢ and bs € {a,b,d}. By an argument like that
as above, when ay V as V az = d the result holds.

Example 3.4. Let £1 = {0,a,b,c, 1} be a lattice with the relations 0 < a<c¢<1,0<b<c<1,aVb=c
and a ANb = 0. Suppose that £ = £1 x £1, P ={1,c} x {1} and S = {0,a} x {0,a}; so P is a filter of £
with PNS = 0. Then P is a weakly S-2-absorbing filter. Indeed, let (1,1) # (a1, b1) V. (az,b2) V. (as, bs) =
(c,1) € P for some (a1,b1), (az,b2), (as,b3) € £. Then (a,a) € S, by Vba Vb3 =1 and a1 Vaz Vasz = c.
Since by Vo Vbs = 1, we conclude that there exists i € {1,2,3} such that b; = 1, say by = 1. Then either
(a,a) Ve (a1,b1) Ve (az,b2) € P or (a,a) Ve (a1,b1) Ve (asz,b3) € P, as needed.

On the other hand, P is not a weakly 2-absorbing filter since (1,1) # (a,b)V (b,0)V(0,1) = (¢,1) € P
but neither (a,b) V (b,0) = (¢,b) € P nor (a,b) vV (0,1) = (a,1) € P nor (b,0) vV (0,1) = (b,1) € P. Thus
a weakly S-2-absorbing filter need not be a weakly 2-absorbing filter.

Example 3.5. Let S C S be join closed subsets of £ and P a filter of £ disjoint with S. It s clear
that if P is a weakly S’-2-absorbing filter of £, then P is a weakly S-2-absorbing filter. However, the
converse is not true in general. Indeed, suppose that £ is the lattice as in Example 3.4 and let S’ =
{(0,0)} € S ={0,a} x {0,a}. Then P = {1,c} x {1} is a weakly S-2-absorbing filter of £ but not a
weakly S’-2-absorbing filter of £.

Proposition 3.6. Let S’ C S be join closed subsets of £ such that for any s € S, there exists t € S
satisfying sVt € S'. If P is a weakly S-2-absorbing filter of £, then P is a weakly S’-2-absorbing filter
of £.

Proof. Let z,y,z € £ such that 1 # xVyV z € P. Then there exists s € S such that sVzVy e P
orsVxVzePorsVyVze P. By the hypothesis, there exists a t € S such that s V¢ € S’ and then
sVtVaVye PorsVivVvaVze PorsVitVyVze P, as P is a filter. This shows that P is a weakly
S’-2-absorbing filter. O

Theorem 3.7. If S is a join closed subset of £, then the intersection of two weakly S-prime filter is a
weakly S-2-absorbing filter.

Proof. Let Py, P, be two weakly S-prime filters of £ and P = P, N P,. Let a,b,¢c € £ such that
1#aVbVvee P. Since Py is weakly S-prime and 1 # a VbV ¢ € Py, there exists s; € S such that
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s1Va€ Pyors; VbVceée P. Again as P, is weakly S-prime and 1 £ a VbV ¢ € P; there exists s, € S
such that so Vb€ Py or soVaVeée Py, We split the proof into four cases.

Case 1: syVa€ P, s1VbVecg P,soVbe Pyand soVaVeé¢ Py, Now, put s = s1V sy €85.
Then sVaVbe PLNP,= P, as P, and P, are filters.

Case 2: s1;Va € P,s1VbVed P, s9Vbé¢ Pyand soVaVe € Py, Set s =81V sa. Then
sVaVceP.

Case 3: sy1Va ¢ Py, s1VbVe € P, s3Vb € Pyand soVaVe ¢ Py. Tt is easy to see that sVbVe € P,
where s = s1 V ss.

Case 4: sy Va ¢ P, s1VbVec€ P,ssVb¢ Prand ssVaVe € Py If 51 VaVe € Py, then
sVaVcée P and so we are done, where s = s1 V $3. So we may assume that s; VaVc ¢ P;. Since
Py is weakly S-prime, 1 ZaVbVc € Py and s1 VaVc¢ P, we conclude that s; Vb € P;. Similarly,
so V a € Py. Therefore, sVaVbe P, where s = s1 V so. Thus P is weakly S-2-absorbing. O

An element x of £ is called identity join of a lattice £, if there exists 1 # y € £ such that zVy = 1.
The set of all identity joins of a lattice £ is denoted by I(£).

Proposition 3.8. Let P be a filter of £, S a join closed subset of £ disjoint with P and SNI(£) = (.
The following assertions are equivalent:

(1) P is a weakly S-2-absorbing filter of £;
(2) (P :z 8) is a weakly 2-absorbing filter of £ for some s € S.

Proof. (1) = (2) Let P be a weakly S-2-absorbing filter of £. Then we keep in mind that there exists
a fixed s € S that satisfies the weakly S-2-absorbing condition. Now, we show that (P :z s) is a weakly
2-absorbing filter of £. Let z,y,z € £ such that 1 ZaxVyVz e (P:gs) (soxVyVzVs#l, as
SNI(£)=0). Thenl #xVyVzVse PgivessVaVye PorsVaeV(sVz)=sVaVzeDPor
sVyV(sVz)=sVyVze P which means that tVy € (p:gs)oraVze (P:gs)oryVze (P:gs).
Thus (P :¢ s) is a weakly 2-absorbing filter of £. The implication of (2) = (1) is clear. O

The following theorem provides some condition under which a weakly S-2-absorbing filter is S-2-
absorbing.

Theorem 3.9. Let S be a join closed subset of £ and P be a weakly S-2-absorbing filter of £. If P is
not S-2-absorbing, then P = {1}. In particular, the only weakly S-2-absorbing filters of £ that are not
S-2-absorbing can only be {1}.

Proof. Let P be a weakly S-2-absorbing filter of £ and assume that s € S satisfies weakly S-2-
absorbing condition. On the contrary, assume that P # {1}. It suffices to show that P is S-2-absorbing.
Let a,b, c € £ such that avbVe € P. If 1 # aVbVe € P, then P is weakly S-2-absorbing gives sVaVb € P
or sVaVc€ PorsVbVcee P. Now, suppose that a VbV c= 1. Since P # {1}, there exists p € P such
that p# 1. Then 1 # (aAp)V (bAp)V (cAp) =p € P gives sV (aAp)V (bADP) = (sVaVb)A(sVp) € P
or (sVaVe)A(sVp) e Por (sVbVe)A(sVp) € P. Therefore, sVaVbe PorsVaVcéeP or
sVbVce P bylemma 2.1 (1). This shows that P is an S-2-absorbing filter, as required. O

Corollary 3.10. (/6], Theorem 2.2) If P is a weakly 2-absorbing filter that is not 2-absorbing, then
P={1}.

Proof. Take S = {0} in Theorem 3.9. O

Theorem 3.11. Let S be a join closed subset of £ and P be a weakly S-2-absorbing filter of £. If
a,b,c€ £ withaVbVe=1and sVaVbsVaVec,sVbVedg P for any s €S, then the following hold:

(1) (avb)VP=(aVc)VP=(bVe)VvP={1};
(2)avP=bVvP=cVP=/{1}.
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Proof. (1) On the contrary, assume that (a Vb)V P # {1}. Then a VbV p # 1 for some p € P. Since
1#aVvbVp=(aVb)V(pAc) € P, there exists s € S such that (sVa)V(cAp) = (sVaVe)A(sVaVp) € P
or (sVb)V(cAp)=(sVbVe)A(sVbVp)e€ PorsVaVbe P which implies that sVa Ve € P or
sVbVeePorsVaVbe P by Lemma 2.1 (1) which is impossible. Thus (a V)V P = {1}. Similarly,
(avVe)VP=(bVve)V P ={1}.

(2) If av P # {1}, then a Vp # 1 for some p € P. Sincel #aVp=aV (bAp)V (cAp) € P,
we conclude that there exists s € S such that (sVa)V(bADP) = (sVaVbd A(sVaVp) € P or
(sVa)V(cAp)=(sVaVe)A(sVaVp)ePorsV(bAp)V(cAp)=(sVbVe)A(sVp) e P which
gives sVaVcece PorsVbVee PorsVaVbe P by Lemma 2.1 (1) which is a contradiction. Hence
aV P ={1}. Similarly, bV P =c¢V P = {1}. O

We next give two other characterizations of weakly S-2-absorbing filters.

Theorem 3.12. Let P be a filter of £ and S a join closed subset of £ disjoint with P. The following
assertions are equivalent:

(1) P is a weakly S-2-absorbing filter of £;

(2) For any a,b € £, there exists s € S such that if sVaVbé¢ P, then (P:gaVb)=(1l:£aVb) or
(P:xaVvVb)C(P:gsVa)or(P:paVb) C(P:gsVb);

(3) For any a,b € £ and for any filter F of £, there exists s € S such that, if {1} # (aVb)VF C P,
then sVaVbe P or FC(P:gsVa)or FC(P:psVb).

Proof. (1) = (2) Let P be a weakly S-2-absorbing filter of £ and assume that s € S satisfies weakly
S-2-absorbing condition. Suppose that (P :¢ aVb) # (1:£aVb). Since (1:£aVb) G (P :raVb), we
conclude that there exists e € (P :x aVb) such that aVbVe#1. Let z€ (P:xaVD). ffavbVz#1,
then sVaVze PorsVbVze Pby (l),andsoz€ (P:gsVa)or z€ (P:gsVb). Now, suppose
that aVbVz=1. Thenl#aVbVe=(aVbVe)A(aVbVz)=(aVDb)V(zAe)€ P implies that
(sVa)V(zAe)=(sVaVz)A(sVaVe) € Por (svVbV(zAe)=(sVbVz)A(sVbVe) € P;
hence sVaVz € Por VbV z € P by Lemma 2.1 (1). Thus z € (P :gx sVa)orz € (P:gsVb),ie.
(P:paVb)C(P:igsVa)or (P:igaVb)C(P:psVb).

(2) = (3) Let a,b € £ and F a filter of £ such that {1} # (a VvV b) V F C P and suppose that s
has the stated property in (2). Assume that sVa Vb ¢ P. Since (aVb)V F C P, we conclude that
FC(P:gaVvb)andby (2), FC(l:gaVb)or FC(P:gsVa)or FC(P:psVb).HHFC(l:gaVd),
then (a VvV b) V F = {1} which is impossible. Therefore, either FF C (P :z sVa) or F C (P:z sVb).

(3) = (1) Let a,b,c € £ such that 1 # aV bV e € P. Then {1} # (aVb) VT ({c}) C P gives
sVavbe PorT({c}) C(P:xsVa)orT({c}) C(P:gsVb) by (3) which implies that sVaVb € P or
sVaVcePorsVbVee P, ie. (1) holds. O

Corollary 3.13. For proper filter P of £, The following assertions are equivalent:
(1) p is a weakly 2-absorbing filter of £;

(2) For any a,b€ £, ifavb¢ P, then (P:gaVb =(1:£gaVbd) or(P:xgaVb) C(P:ga)or
(P:paVb)C(P:gb);

(8) For any a,b € £ and for any filter F of £, if {1} # (aVb)VF C P, then aVb € P or
FC(P:ga)or FC(P:zb).

Proof. Take S = {0} in Theorem 3.12. O

Lemma 3.14. Let P be a filter of £ and S a join closed subset of £ disjoint with P. The following
assertions are equivalent:
(1) P is a weakly S-2-absorbing filter of £;

(2) There exists an s € S such that for any a,b € £, if {1} # (aVb)V F C P for some filter F of
£, thensVaVvbe P orFC(P:gsVa)orFC(P:gsVb).
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Proof. (1) = (2) By the hypothesis, we keep in mind that there exists a fixed s € S that satisfies the
weakly S-2-absorbing condition. Let a,b € £ such that {1} # (a Vb) V F C P for some filter F of £.
Suppose that s Va Vb ¢ P. Now, it suffices to show that FF C (P :x sVa)or FFC (P:g sVb). Let
feF (soavbVvfeP) IfavbV f#1,thensVaVfePorsVbV f € P which implies that
FC(P:gsVa)or FC(P:gsVb). Sosuppose that aVbV f = 1. Since (aVb)V F # {1}, we conclude
that 1 ZaVv bV f; € P for some f; € F;s0sVaV fi € PorsVbV fi € P. Now, we put fo = f A fi.
Then 1 £ aVbV fo =aVbV f; € P which gives sVaV fo € Por sVbV fo € P. We split the proof into
three cases.

Case 1: sVaV fi € Pand sVbV f; € P. Since sVaV fo=(sVaV f)A(sVaV fi1) € P or
sVbOV fo=(sVbV fYA(sVDV f1) € P, we get that sVaV f € PorsVbV fe P by Lemma 2.1 (1);
hence F C (P:g sVa)or FC(P:gsVb).

Case 2: sVaV f; € Pand sVbV fi ¢ P. On the contrary, assume that sVaV f ¢ Pand sVbV f ¢ P.
Then sVaV fa = (sVaV f)A(sVaV f1) ¢ P by Lemma 2.1 (1); s0 sVbV fa = (sVbV f)A(sVbV f1) € P
which is impossible by Lemma 2.1 (1). Thus sVaV f e PorsVbV fe Pandso F C (P:zsVa)or
FCP:psVb).

Case 3: sVaV f; ¢ Pand sVbV f; € P. This proof is similar to that in Case (2) and we omit it.

(2) = (1) Let x,y,2 € £ such that 1 # 2V yV z € P. Then {1} # (zVy) VvV T({z}) C P gives
sVeVyePorT({z}) C(P:gsVz)orT({z}) C(P:gsVy) by (2) which implies that sV Vy € P
orsVaVzePorsVyVze P, ie. (1) holds. O

Lemma 3.15. Let P be a filter of £ and S a join closed subset of £ disjoint with P. The following
assertions are equivalent:

(1) P is a weakly S-2-absorbing filter of £;

(2) There exists an s € S such that for any filters F,G of £ anda € £, if {1} #aV (FVG) C P,
then FC(P:gsVa) orGC(P:gsVa) or FVGC(P:zs).

Proof. (1) = (2) Let P be a weakly S-2-absorbing filter of £ and assume that s € S satisfies weakly S-
2-absorbing condition. Let F, G be filters of £ and a € £ such that {1} # aV (F'VG) C P. Suppose that
(sVa)VF ¢ P. SosVaVf ¢ P forsome f € F. We claim that there exists b € F such that (aVb)VG # {1}
and sVaVb ¢ P. Since aV (FVG) # {1}, we conclude that (aV f1) VG # {1} for some f; € F. Suppose
that sVaV fi¢g Por (aV f)VG#{1}. If sVaV f; ¢ P, then we put b= f; and so sVaVb¢ P and
(avb)vVG #£{1}. If (aV f)VG # {1}, then we put b= f and so sVaVb¢ P and (aVbd)VG# {1}
Hence, by putting b = f or b = fi, we get the result. Therefore, suppose that s VaV f; € P and
(aV f)VG={1}. It follows that {1} ZaV (fAfLI)VG=((aV fi)AN(aVf))VG=(aV fi)VGCP
and (sVa)V(fAfi)=(sVaV fi)A(sVaV f)¢ P by Lemma 2.1 (1). So we find b € F such that
(aVO)VG# {1} and sVaVbéP.

Since {1} # (aVb)VG CaV (FVG) C Pand sVaVb¢ P, weobtain G C (P :x sVa) or
G C (P :£ sVb) by Lemma 3.14. If G C (P :x sV a), then we are done. So we may assume that
G (P:gsVa)andso G C (P:g sVb). Let c € F. If (aVe) VG # {1}, then by Lemma 3.14,
ce(P:gsVa)orce (P:gsVQG)since (sVa)VG ¢ P;hence FC (P:psVa)or FVGC (P g s),
ie. (2) holds. If (aVe) VG = {1}, then {1} #aV (bAc)VG = ((aVD)A(aVe)VG=(aVb)VGC P.
Now, Lemma 3.14 gives (sVa)V (bAc) € Por sV (bAc)V G C P which implies that bAc € (P :g sVa)
orbAc € (P :g sVG). Now assume that bAc € (P:g sVa)and bAc ¢ (P :g sV G). Consider
{1} #aV(bAc)VG = ((aVb)A(aVe) VG = (aVb)VG C P. By Lemma 3.14, (sVaVb)A(sVaVe) =
(sVa)V(bAc)e PorsV(bAc)VG C P since (sVa)VG ¢ P; hence sVaVbe P by Lemma 2.1
(1) or bAc € (P :p sV @G), acontradiction. ThusbAc € (P:p sVG)andsosV (bAc)VG C P. Let
g€ G. Then sV (bAc)Vg=(sVbVg)A(sVeVyg) € P gives sVeVg e P by lemma 2.1 (1) and so
¢ € (P :x sV G) which implies that F C (P :¢ sV G). Therefore, FVG C (P :¢ s).

(2) = (1) Let a,b,c € £ such that 1 #aVbVe e P. Set F =T({b}) and G = T({c}). Then
{1} # aV(FVQG) C P gives sVaVb € (sVa)VF C Por sVaVce € (sVa)VG C Por sVbVe € sV(FVG) C P
by (2), as required. O
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Proposition 3.16. Let P be a filter of £ and S a join closed subset of £ disjoint with P. The following
assertions are equivalent:

(1) P is a weakly S-2-absorbing filter of £;

(2) There exists an s € S such that for any filters F,G,K of £, if {1} # FV GV K C P, then
FVGC(P:gs)orFVKC(P:gs)orGVK C(P:gs).

Proof. (1) = (2) Let P be a weakly S-2-absorbing filter of £ and assume that s € S satisfies weakly
S-2-absorbing condition. Let F,G, K be filters of £ such that {1} # FV GV K C P; so {{1} #
gV (FVK)C P for some g € G. By Lemma 3.15, (sVg)VF C Por (sVg)VGC PorsV(FVK)CP.
If sV (FV K) C P, then we are done and so assume that s V (F'V K) ¢ P. Therefore, we have either
(sVg)VF CPor(sVg) VK C P. We claim that either sV(FVG) C Por sV (GVK)CP. Let
g € G. It {1} # g1V (FVK) C P, then by Lemma 3.15, (sVg))VF C Por (sVg1)VK C P
since s V (F V K) ¢ P which implies that g1 € (P :x sV F) or g1 € (P :¢ sV K). It follows that
FVGC(P:gs)or GVK C (P :g s), i.e. we get the claim. Now let g1 V (FV K) = {1}. Since
{1} # (@A) V(FVK)= (g1 V(FVEK)A(gV(FVK)) =gV (FVK)C P, we conclude that
sV((gANgp)VF CPorsV(gAg)V K CP by Lemma 3.15. , we split the proof into four cases.

Case 1: (sVg)VF CPandsV(gAg)VF CP.

Since sV (gAg1)Vf=(sVgV f)A(sVg V[f)ePforall fe€F, weconclude that sV g,V f € P
by Lemma 2.1 (1) which implies that (s V g;) V F C P; hence sV (F'VG) C P.

Case 2: (sVg)VK CPandsV(gAhg)VKCP.

Since sV (gAg1)Vk=(sVgVk)A(sVgiVk)ePforall k€ K, we conclude that sV g; Vk e P
by Lemma 2.1 (1) which implies that (s V ¢g1) V K C P; hence sV (GV K) C P.

Case 3: (sVg)VFCP,(sVg)VKZP,sV(gANg)VKCPandsV(gAg)VF¢P.

Since (sV g) V K ¢ P, we conclude that sV gV k ¢ P for some k € K. Then by the hypothesis,
sV(gAgp)VE=(sVgVEk)A(sVgsVk) € P which implies that sV gV k € P by Lemma 2.1 (1)
and this is not possible. Hence since (sVg)VEF C Por (sVg) VK C PorsV(gAg)VF C P or
sV (gANgq1)V K C P, there must be any one of the following holds:

(i) (sVg)VK CPand sV(gAg1)VK CPand sV (gAg1)VE ¢ P, then g1 € (P:g sV K); hence
GV K C(P:gs).

(ii) (sVg)VEF CPand (sVg)VK € Pand sV (gAg1)VF C P, then g1 € (P :¢ sV F); hence
GVFC(P:gs).

Case 4: sV(gANg1)VF C P, sV(gAqp)VK ¢ P, (sVg)VK C Pand (sVg)VF ¢ P.
By an argument like that in the Case (3), we get g1 € (P :g sV F) or g1 € (P :z sV K). Therefore
FVGC(P:gs)or GVK C(P:g s).

(2) = (1) Let a,b,c € £ such that 1 #aVbVce P. Set F'=T({b}), G =T({b}) and K =T ({c}).
Then {1} # FVGV K C P gives sVaVbe sV(FVG) CPorsVaVecesV(FVK CPor
sVbVeesV(GVK)CP by (2), as required. O

The next theorem gives a more explicit description of the weakly S-2-absorbing filters of £.

Theorem 3.17. Let P be a filter of £ and S a join closed subset of £ disjoint with P. The following
assertions are equivalent:
(1) P is a weakly S-2-absorbing filter of £;

(2) There exists an s € S such that for any a,b € £, if {1} # (aVb)V F C P for some filter F of
£, then sVaVvVbeP or FC(P:gsVa)orFC(P:gsVh).

(8) There exists an s € S such that for any filters F,G of £ and a € £, if {1} #aV (FVG) C P,
then F C (P:gsVa) orGC(P:gsVa) orFVGC(P:gs).



S. Ebrahimi Atani / J. Algebra Comb. Discrete Appl. 12(3) (2025) 237-248

(4) There exists an s € S such that for any filters F,G, K of £, if {1} # FVGV K C P, then
FVGC(P:gs) orFVKC (P:gs)orGVK C(P:gs).

Proof. This is a direct consequence Lemma 3.14, Lemma 3.15 and Proposition 3.16. O

4. Further results

We continue in this section with the investigation of the stability of weakly S-2-absorbing filters in
various lattice-theoretic constructions.

Proposition 4.1. Let S be a join closed subset of £ and P a weakly S-2-absorbing filter of £ such that
PNS=0. IfQ is a filter of £ such that QNS # O, then PV Q is a weakly S-2-absorbing filter of £.

Proof. Since (PVQ)NS C PNS =10, we conclude that PV Q)N S = . Consider t € QN S. Let
a,b,c € £ such that 1 #aVbVce PVQ C P. Then there exists s € S such that sVaVvbe P or
sVaVece PorsVbVc e P which gives sVtVaVbe PVQor sVtVaVee PVQor sVtVbVe e PVQ,
where sVt €S, ie. PVQ is a weakly S-2-absorbing filter of .£. O

Proposition 4.2. Suppose that S is a join closed subset of £. Then the following assertions are equiv-
alent:

(1) Every weakly S-2-absorbing filter of £ is prime;
(2) £ is a £-domain and every S-2-absorbing filter of £ is prime.

Proof. (1) = (2) Since {1} is a weakly S-2-absorbing filter, we conclude that it is a prime filter by (1)
which gives £ is a £-domain. Finally, since every S-2-absorbing filter of £ is weakly S-2-absorbing, we
have P is prime by (1).

(2) = (1) Let P be a weakly S-2-absorbing filter of £. It suffices to show that P is an S-2-absorbing
filter. Let a,b,c € £ such that avbVve € P. If aVbV ¢ # 1, then there exists s € S such that svavb e P
orsVaVce PorsvVbvce P. lfavbVve=1,thena=1lorb=1lorc=1;s0sVaVvVb=1¢€ P or
sVaVec=1e€ PorsVbVe=1¢ P for every s € S. Therefore, every weakly S-2-absorbing filter of £
is prime by (2). O

Theorem 4.3. Let f: £ — £’ be a lattice homomorphism such that f(1) =1 and S a join closed subset
of £. The following hold:

(1) Let £ be a complemented lattice. If f is a epimorphism and P is a weakly S-2-absorbing filter
with Ker(f) C P, then f(P) is a weakly f(S)-2-absorbing filter of £;

(2) If f is a monomorphism and P’ is a weakly f(S)-2-absorbing filter of £', then P = f=1(P') is
a weakly S-2-absorbing filter of £.

Proof. (1) Clearly, f(S) is a join closed subset of £’. Let ¢ € f(S) N f(P). Then ¢ = f(p) = f(s) for
some p € P and s € S. By assumption, there exists p’ € £ such that pVp’ =1 and pAp’ = 0 which gives
f(svyp) = f(p)V f(p') =1; hence sVp' € Ker(f) C P. Since s=sV (pAp)=(sVP)A(sVp) €P,
we conclude that s € SN P, a contradiction. Thus f(S) N f(P) = 0. Let x,y,z € £ such that
1#aVyVz e f(P). Then there exist a,b,c € £ such that z = f(a), y = f(b), 2z = f(c) and
1# f(avbVve)=xzVyVze f(P) (soaVbVe# 1) which implies that f(aVbVe) = f(q) for some ¢ € P.
By the hypothesis, ¢V ¢ =1 and g A ¢’ = 0 for some ¢’ € £. Since f(aVbVeVq') =1, we conclude that
aVbVvevg € Ker(f) C Pyhence 1l #aVbVe=(aVbVe)V(ghg)=(avbVeVvg A(aVbVeVvd) € P,
as P is a filter. This implies that sVaVvb& PorsVaVecée PorsVbVcée P for some s € S. It means
that f(s)VaVvy e f(P)or f(s)VaVze f(P)or f(s)VyV z € f(P). Therefore, f(P) is a weakly
f(S)-2-absorbing filter of £’.
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(2) By assumption, there exists s € S such that for all z,y,z € £, xVyVz € P’ implies f(s)VaVy €
Plor f(s)VzVze P or f(s)VyVze P'. Clearly, PNS = . Let a,b,c € £ such that 1 #aVbVce P.
Since Ker(f) = {1} by Lemma 2.3 (2), we conclude that 1 # f(a VbV ec) = f(a)V f(b) V f(c) € P'; so
F(s)V F(@) v F(B) = f(sVavb) € P or f(s)V f(a) v f(e) = f(sVave) e P or f(s)V F(B) v f(c) =
f(sVbVe) e P Hence, sVaVbe PorsVaVeePorsVbVcee P, and so P = f~1(P') is a weakly
S-2-absorbing filter of £. 0

Corollary 4.4. Let S be a join closed subset of £. If £ is a sublattice of £ and G’ is a weakly S-2-
absorbing filter of £', then G' N £ is a weakly S-2-absorbing filter of £.

Proof. 1t suffices to apply Theorem 4.3 (2) to the natural injection ¢ : £ — £’ since ¢:=1(G")
G'n£.

Ol

Let F be a filter of £ and S a join closed subset of £ disjoint with F'. It is clear that Sg = {s A F :
s € S} is a join closed subset of £/F.

Theorem 4.5. Let S be a join closed subset of £, F and G are two filters of £ with F C G. The
following hold:

(1) Let £ be a complemented lattice. If G is a weakly S-2-absorbing filter of £, then G/F is a weakly
Sg-2-absorbing filter of £/F;

(2) If G/F is a weakly Sq-2-absorbing filter of £/F and F is a weakly S-2-absorbing filter of £,
then G is a weakly S-2-absorbing filter of £.

Proof. (1) Assume that f : £ — £/F such that f(a) = a A F and let z,y € £. Then f(zVy) =
(VYANF=@ANF)Vgo(yANF)=f(z) Vg f(y). Similarly, f(x Ay) = f(z) Ag f(y). So f is a lattice
homomorphism from £ onto £/F and f(1) = 1A F = 1;,p. Suppose that G is a weakly S-2-absorbing
filter of £. Since Ker(f) = F C G and f is onto, we conclude that f(G) = G/F (see [8, Lemma 3.4]) is
a Sg-2-absorbing filter of £/F by Theorem 4.3 (1).

(2) Let a,b,c € £ suchthat 1 # aVbVe € G. Then (aAF)Vo(ODAF)Vg(eAF) = (aVbVe)AF € G/F.
If (@VbVe)ANF #1g/p = 1AF, then G/F is a weakly Sq-2-absorbing gives there exists s € S such that
(sANF)Vg(aNF)Vg(bAF) = (sVaVb)AF € G/F or (sSAF)Vg(aAF)Vg(cAF) = (sVaVe)ANF € G/F
or (sSAF)Vg(bAF)Vg(cANF)=(sVbVc)AF € G/F which implies that sVaVvb) € GorsVaVcee G or
sVbVe € G. If (aVbVe)ANF = 1AF, then there exist f1, fo € F such that (aVbVe)Afi = 1A fo = fo € F;
sol#aVbVceF by Lemma 2.1 (1) which gives there is an element ¢ € S such that tVavbe F C G
ortVaVece FCGortVbVeeF CG. This shows that G is a weakly S-2-absorbing filter of £. [J

Theorem 4.6. Let £ = £1 X £5 be a decomposable lattice and S = Sy x S, where S; is a join closed
subset of £;. Suppose that P = Py x Py, where Py # {1} is a filter of £1 and Py # {1} is a filter of £5.
Then the following assertions are equivalent:

(1) P is a weakly S-2-absorbing filter of £;

(2) Py is a weakly S1-2-absorbing filter of £1 and PN Sy # O or P is a weakly So-2-absorbing filter
of £5 and Py NSy # O or Py is a weakly Sy-prime filter of £1 and Py is a weakly So-prime filter of £.

Proof. (1) = (2) Let P be a weakly S-2-absorbing filter of £ and assume that s = (s1, s2) € S satisfies
weakly S-2-absorbing condition. As PN S = ), we get either P, NS, =0 or P,NSy =0. If PLNS; #0,
we will show that P» is a weakly Ss-2-absorbing filter of £5. Let 1 #aV bV ¢ € P, for some a,b,c € £4.
Then (1,1) # (1,a) V. (1,b) Ve (1,¢) = (L,aVbVe) € P gives s V. (1,a) Ve (1,b) = (1,52 VaVb) € P
or sV.(1,a) Ve (1,¢) = (1,82 VaVe) € Por sV, (1,b) Ve (1,¢) = (1,82 VbV e) € P. This shows that
sasVavVbe Pyor ssVaVcece Pyor soVbVe e Py Hence, P, is a weakly So-2-absorbing filter of £5.
Similarly, if So N Py # (), then P; is a weakly S1-2-absorbing filter of £.

Now, assume that S; NP, = ) = S, N P,. We will show that P, is a weakly S;-prime filter of £ and
P, is a weakly Ss-prime filter of £5. Suppose that P; is not a weakly S;-prime filter of £1. Then there
exist x,y € £1 such that 1 #zVy € P, but s; Vx,s1 Vy ¢ P. Since So N P, = (), we conclude that
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89 € Py. Then (1,1) # (2,0) V. (0,1) V¢ (y,82) = (xVy,1) € P gives sV, (z,0) V. (0,1) = (s; Vz,1) € P
or sV (x,0) Ve (y,82) = (s1 VaVy,ss) € PorsV.(0,1) V. (y,s2) = (s1 Vy,1) € P;so sy Va € Py or
s9 € P or s1Vy € Py which is a contradiction. Therefor, P, is a weakly Si-prime filter of £5. Similarly,
P is a weakly Sa-prime filter of £5.

(2) = (1) Let P, NSy # 0 and P> be a weakly Ss-2-absorbing filter of £5. At first, note that
PNS=0. Let (1,1) # (a,2) Ve (b,y) Ve (¢,2) = (aVbV e,z VyV z) € P for some (a,x), (b,y),(c,z) € £.
Since P; NSy # ), there exists s; € Sy such that s; Vv € P; for all v € £1. Also, there exists so € Sy
satisfying P, to be a weakly Ss-2-absorbing filter of £5. Now, put s = (s1,82) € S. If x VyV z # 1, then
P; is a weakly So-2-absorbing filter gives soVaVy € P or saVaVz € Py or soVyVz € Py. This shows that
sVel(a,z)Ve(byy) € PorsVe(a,x)Ve(c,z) € PorsV.(c,z)Ve(b,y) € P. Now, assume that zVyVz = 1.
Since P, # {1}, there exists p; € Py such that ps # 1. As 1 # (x Aps2) Ve (Y Apa) Ve (2 Ap2) =p2 € Pa,
we conclude that so V (x Apa) Ve (Y Ap2) = (S2Vp2) A(saVaVy) € Pyor saV(xApa) Ve (2Aps) =
(s2Vp2)A(saVaeVz) € PyorsaV(yApa) Ve (2Ap2) = (s2Vp2) A(s2VyV z) € Py; hence saVaVy € Py
or saVaVze Pyor ssVyVz e Py by Lemma 2.1 (1). This implies that s V. (a,z) V. (b,y) € P
or s V. (a,x) Ve (¢,z) € P or sV, (¢,z) Ve (b,y) € P. Hence, P is a weakly S-2-absorbing filter of .£.
If P,NSy # 0 and Py is a weakly S;-2-absorbing filter of £1, similar argument shows that P is an
S-2-absorbing filter.

Now, suppose that for each ¢ = 1,2, P; is a weakly S;-prime filter of £;. Let (1,1) # (a,2) V. (b,y) Ve
(¢,z) =(aVbVe,xVyVz) € P for some (a,x),(b,y),(c,z) € £. If 1 #£aVbVc € Py, then there exists a
fixed s; € Sy such that s Va € Pyor s;Vbe Py or s1Veé€ Py. So Suppose that a VbV e = 1. Consider
1#p; € P. Then1# (pyAa)V(pi Ab)V(p1Ac)=p1 € Py gives s1V(aApr) = (s1Vp1)A(s1Va) € Py
or s1V(bADP)=(s1Vp1)A(s1Vb) € PyorsyV(eApr)=(s1Vp1)A(s1Vec)€ P which implies that
s1Va€ Pyors Vbe P or sgVe€ Py by Lemma 2.1 (1). Similarly, there exists sy € Sy such that
saVx € Pyor saVy € Pyor soVz € Py, Put s = (s1,s2) € S. Without loss of generality, we may assume
that s; Va € Py and s3V z € P5. Then s V. (a,x) V¢ (¢,z) € P. Therefore, P is an S-2-absorbing filter
of £. O
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