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1. Introduction

All lattices considered in this paper are assumed to have a least element denoted by 0 and a greatest
element denoted by 1, in other words they are bounded. Our objective in this paper is to extend the
notion of weakly S-2-absorbing property in modules theory to weakly S-2-absorbing property in lattice
theory. Indeed, we are interested in investigating weakly S-2-absorbing filters to use other notions of
weakly S-2-absorbing and associate which exist in the literature as laid forth in [16].

Prime ideals and submodules have a significant place in ring and module theory. Several generaliza-
tions of these concepts have been investigated extensively by many authors see, for example, [1, 2, 4, 6,
7, 9, 10, 11, 12, 13, 14, 15, 16]. In 2003, Anderson and Smith in [1] defined weakly prime ideals which
is a generalization of prime ideals (also see [7, 9]). A proper ideal P of a ring R is said to be a weakly
prime if 0 ̸= xy ∈ P for each x, y ∈ R implies either x ∈ P or y ∈ P . Badawi generalized the concept
of prime ideals in [4]. We recall from [4] that a proper ideal I of a commutative ring R is said to be a
2-absorbing ideal if whenever abc ∈ I for a, b, c ∈ R, then ab ∈ I or ac ∈ I or bc ∈ I (also see [6]). In
2019, Hamed and Malek [12] introduced the notion of an S-prime ideal, i.e. let S ⊆ R be a multiplicative
set and I an ideal of R disjoint from S. We say that I is S-prime if there exists an s ∈ S such that for all
a, b ∈ R with ab ∈ I, we have sa ∈ I or sb ∈ I (also see [14]). Almahdi et. al. [2] introduced the notion
of a weakly S-prime ideal as follows: We say that I is a weakly S-prime ideal of R if there is an element
s ∈ S such that for all x, y ∈ R if 0 ̸= xy ∈ I, then xs ∈ I or ys ∈ I.
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In 2020, Ulucak, Tekir and Koc [15] introduced the notion of an S-2-absorbing submodules, i.e. let
S ⊆ R be a multiplicative set and P a submodule of an R-module M with S ∩ (P :R M) = ∅. We say
that P is an S-2-absorbing submodule if there exists an element s ∈ S and whenever abm ∈ P for some
a, b ∈ R and m ∈ M , then sab ∈ (P :R M) or sam ∈ P or sbm ∈ P . In 2021, Naji [13] introduced
the notion of an S-2-absorbing primary submodules, i.e. let S ⊆ R be a multiplicative set and P a
submodule of an R-module M with S ∩ (P :R M) = ∅. We say that P is an S-2-absorbing primary
submodule if there exists an element s ∈ S and whenever abm ∈ P for some a, b ∈ R and m ∈ M , then
sab ∈

√
(P :R M) or sam ∈ P or sbm ∈ P . In 2023, Sudharshana [16] introduced the notion of a weakly

S-2-absorbing submodules, i.e. let S ⊆ R be a multiplicative set and P a submodule of an R-module M
with S ∩ (P :R M) = ∅. We say that P is a weakly S-2-absorbing submodule if there exists an element
s ∈ S and whenever 0 ̸= abm ∈ P for some a, b ∈ R and m ∈ M , then sab ∈ (P :R M) or sam ∈ P or
sbm ∈ P .

Let £ be a bounded distributive lattice. We say that a subset S ⊆ £ is join closed if 0 ∈ S and
s1 ∨ s2 ∈ S for all s1, s2 ∈ S (if P is a prime filter of £, then £ \ P is a join closed subset of £). Among
many results in this paper, the first, preliminaries section contains elementary observations needed later
on. Section 3 is dedicated to the investigation of the some basic properties of weakly S-2-absorbing
filters. At first, we give the definition of weakly S-2-absorbing filters (Definition 3.1) and provide an
example (Example 3.4) of a weakly S-2-absorbing filter of £ that is not a weakly 2-absorbing filter. It is
shown (Theorem 3.7) that if S is a join closed subset of £, then the intersection of two weakly S-prime
filter is a weakly S-2-absorbing filter. We provides some condition under which a weakly S-2-absorbing
filter is S-2-absorbing (see Theorem 3.9). Also, in Theorem 3.12, we give two other characterizations of
weakly S-2-absorbing filters. The rest of this section, we investigate a more explicit description of the
weakly S-2-absorbing filters of £ (see Lemma 3.14, Lemma 3.15, Proposition 3.16 and Theorem 3.17).
We continue in Section 4 with the investigation of the stability of weakly S-2-absorbing filters in various
lattice-theoretic constructions. Indeed, we investigate the behavior of weakly S-2-absorbing filters under
homomorphism, in factor lattices and in cartesian products of lattices (see Theorem 4.3, Theorem 4.5
and Theorem 4.6).

2. Preliminaries

A poset (£,≤) is a lattice if sup{a, b} = a ∨ b and inf{a, b} = a ∧ b exist for all a, b ∈ £ (and call
∧ the meet and ∨ the join). A lattice £ is complete when each of its subsets X has a join and a meet
in £. Setting X = £, we see that any non-void complete lattice contains a least element 0 and greatest
element 1 (in this case, we say that £ is a lattice with 0 and 1). A lattice £ is called a distributive lattice
if (a∨b)∧c = (a∧c)∨(b∧c) for all a, b, c in £ (equivalently, £ is distributive if (a∧b)∨c = (a∨c)∧(b∨c)
for all a, b, c in £). A non-empty subset F of a lattice £ is called a filter, if for a ∈ F , b ∈ £, a ≤ b implies
b ∈ F , and x ∧ y ∈ F for all x, y ∈ F (so if £ is a lattice with 1, then 1 ∈ F and {1} is a filter of £). A
proper filter F of £ is called prime if x∨ y ∈ F , then x ∈ F or y ∈ F . A proper filter F of £ is said to be
maximal if G is a filter in £ with F ⫋ G, then G = £. The intersection of all filters containing a given
subset A of £ is the filter generated by it, is denoted by T (A). A filter F is called finitely generated if
there is a finite subset A of F such that F = T (A). A proper filter F of a lattice £ is called a 2-absorbing
(resp. weakly 2-absorbing) filter if whenever a, b, c ∈ £ and a ∨ b ∨ c ∈ F (resp. 1 ̸= a ∨ b ∨ c ∈ F ), then
a ∨ b ∈ F or a ∨ c ∈ F or b ∨ c ∈ F . Let P be a filter of £ and S a join closed subset of £ disjoint with
S. We say that P is an S-prime (resp. weakly S-prime) filter of £ if there is an element s ∈ S such that
for all x, y ∈ £ if x ∨ y ∈ P (resp. 1 ̸= x ∨ y ∈ P ), then x ∨ s ∈ P or y ∨ s ∈ P . A filter P is said to be
S-2-absorbing if P ∩S = ∅ and there exists a fixed s ∈ S such that for any x, y, z ∈ £ with x∨ y∨ z ∈ P ,
then s ∨ x ∨ y ∈ P or s ∨ x ∨ z ∈ P or s ∨ y ∨ z ∈ P .

A lattice £ with 1 is called £-domain if a ∨ b = 1 (a, b ∈ £), then a = 1 or b = 1 (so £ is £-domain
if and only if {1} is a prime filter of £). If x ∈ £, then a complement of x in £ is an element y ∈ £ such
that x ∨ y = 1 and x ∧ y = 0. The lattice £ is complemented if every element of £ has a complement in
£. If £ and £′ are lattices, then a lattice homomorphism f : £ → £′ is a map from £ to £′ satisfying
f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y) for x, y ∈ £. First we need the following lemmas
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proved in [3, 5, 6, 8, 10].

Lemma 2.1. Let £ be a lattice.

(1) A non-empty subset F of £ is a filter of £ if and only if x∨z ∈ F and x∧y ∈ F for all x, y ∈ F ,
z ∈ £. Moreover, since x = x∨ (x∧ y), y = y ∨ (x∧ y) and F is a filter, x∧ y ∈ F gives x, y ∈ F for all
x, y ∈ £.

(2) Let A be an arbitrary non-empty subset of £. Then

T (A) = {x ∈ £ : a1 ∧ a2 ∧ · · · ∧ an ≤ x for some ai ∈ A (1 ≤ i ≤ n)}.

Moreover, if F is a filter and A is a subset of £ with A ⊆ F , then T (A) ⊆ F , T (F ) = F and T (T (A)) =
T (A)

(3) If {Fi}i∈∆ is a chain of filters of £, then
⋃

i∈∆ Fi is a filter of £.

Lemma 2.2. Let F,G be filters of £ and x ∈ £. The following hold:

(1) F ∨G = {a ∨ b : a ∈ F, b ∈ G} and x ∨ F = {a ∨ y : y ∈ F} are filters of £ with F ∨G = F ∩G.

(2) If £ is distributive, then F ∧G = {a ∧ b : a ∈ F, b ∈ G} is a filter of £ with F,G ⊆ F ∧G

(3) If £ is distributive, F,G are filters of £ and y ∈ £, then (G :£ F ) = {x ∈ £ : x ∨ F ⊆ G} and
(F :£ T ({y})) = (F :£ y) = {a ∈ £ : a ∨ y ∈ F} are filters of £.

(4) If £ is distributive, G,F1, F2 are filters of £, then G ∨ (F1 ∧ F2) = (G ∨ F1) ∧ (G ∨ F2).

Lemma 2.3. [11, Lemma 3.13] Let £1 and £2 be lattices and f : £1 → £2 be a lattice homomorphism
such that f(1) = 1. The following hold:

(1) Ker(f) = {x ∈ £1 : f(x) = 1} is a filter of £1;

(2) If f is injective, then Ker(f) = {1};
(3) If £1 is a complemented lattice, then f is injective if and only if Ker(f) = {1}.

Assume that (£1,≤1), (£2,≤2), · · · , (£n,≤n) are lattices (n ≥ 2) and let £ = £1×£2×· · ·×£n. We
set up a partial order ≤c on £ as follows: for each x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ £, we write
x ≤c y if and only if xi ≤i yi for each i ∈ {1, 2, · · · , n}. The following notation below will be kept in this
paper: It is straightforward to check that (£,≤c) is a lattice with x∨c y = (x1 ∨ y1, x2 ∨ y2, · · · , xn ∨ yn)
and x ∧c y = (x1 ∧ y1, · · · , xn ∧ yn). In this case, we say that £ is a decomposable lattice.

Quotient lattices are determined by equivalence relations rather than by ideals as in the ring case. If
F is a filter of a lattice (£,≤), we define a relation on £, given by x ∼ y if and only if there exist a, b ∈ F
satisfying x ∧ a = y ∧ b. Then ∼ is an equivalence relation on £, and we denote the equivalence class of
a by a ∧ F and these collection of all equivalence classes by £/F . We set up a partial order ≤Q on £/F
as follows: for each a ∧ F, b ∧ F ∈ £/F , we write a ∧ F ≤Q b ∧ F if and only if a ≤ b. The following
notation below will be kept in this paper: It is straightforward to check that (£/F,≤Q) is a lattice with
(a∧F )∨Q (b∧F ) = (a∨ b)∧F and (a∧F )∧Q (b∧F ) = (a∧ b)∧F for all elements a∧F, b∧F ∈ £/F .
Note that e ∧ F = F = 1 ∧ F if and only if e ∈ F (see [8, Remark 4.2 and Lemma 4.3]).

3. Characterization of weakly S-2-absorbing filters

In this section, we collect some basic properties concerning weakly S-2-absorbing filters. We introduce
the reader the following definition.

Definition 3.1. Let P be a filter of £ and S a join closed subset of £. A filter P is said to be weakly S-
2-absorbing if P ∩S = ∅ and there exists a fixed s ∈ S such that for any x, y, z ∈ £ with 1 ̸= x∨y∨z ∈ P ,
then s ∨ x ∨ y ∈ P or s ∨ x ∨ z ∈ P or s ∨ y ∨ z ∈ P .
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Example 3.2. (1) A weakly 2-absorbing filter P of £ is weakly S-2-absorbing for each join closed subset
S of £ such that S ∩ P = ∅.

(2) If S = {0}, then the weakly 2-absorbing and the weakly S-2-absorbing filters of £ are the same.

(3) It is clear that every S-2-absorbing filter is a weakly S-2-absorbing filter. Since the filter {1} is
(by definition) a weakly S-2-absorbing filter of any lattice, hence the converse is not true in general.

(4) Every weakly S-prime filter is a weakly S-2-absorbing filter. Indeed, let P be an S-prime filter
of £ and a, b, c ∈ £ such that 1 ̸= a ∨ b ∨ c ∈ P . Then there exists s ∈ S such that s ∨ a ∈ P (so
s ∨ a ∨ b, s ∨ a ∨ c ∈ P , as P is a filter) or s ∨ b ∨ c ∈ P , as needed.

Example 3.3. Let £1 = {0, a, b, c, d, 1} be a lattice with the relations 0 ≤ a ≤ d ≤ 1, 0 ≤ b ≤ d ≤ 1,
0 ≤ c ≤ 1 and a ∧ b = a ∧ c = d ∧ c = c ∧ b = 0. Suppose that £ = £1 × £1, P = {b, d, 1} × {1} and
S = {0, c}×{0, c}; so P is a filter of £ with P ∩S = ∅. Then P is an weakly S-2-absorbing filter. Indeed,
let (1, 1) ̸= (a1, b1) ∨c (a2, b2) ∨c (a3, b3) ∈ P for some (a1, b1), (a2, b2), (a3, b3) ∈ £. Then (c, c) ∈ S,
b1 ∨ b2 ∨ b3 = 1 and a1 ∨ a2 ∨ a3 ∈ {b, d}. Now consider the following two cases.

Case 1: There exists i ∈ {1, 2, 3} such that bi = 1, say b1 = 1. If a1 ∨ a2 ∨ a3 = b and there
exists i ∈ {1, 2, 3} such that ai = 0, say a1 = 0, then either (c, c) ∨c (a1, b1) ∨c (a2, b2) = (1, 1) ∈ P or
(c, c) ∨c (a1, b1) ∨c (a3, b3) = (1, 1) ∈ P . So we may assume that a1, a2, a3 are non-zero elements. Then
(c, c) ∨c (a1, b1) ∨c (a2, b2) = (1, 1) ∈ P . Similarly, for a1 ∨2 ∨a3 = d.

Case 2: b1 ̸= 1, b2 ̸= 1 and b3 ̸= 1. Then there exists i ∈ {1, 2, 3} such that bi = c, say b1 = c
and either b2 ∈ {a, b, d} or b3 ∈ {a, b, d}. Let b1 = c and b2 ∈ {a, b, d}. If a1 ∨ a2 ∨ a3 = b and a1 = 0,
then (c, c) ∨c (a1, b1) ∨c (a2, b2) = (1, 1) ∈ P or (c, c) ∨c (a1, b1) ∨c (a3, b3) = (1, 1) ∈ P . If a1 ̸= 0, then
(c, c)∨c (a1, b1)∨c (a2, b2) = (1, 1) ∈ P . Similarly, for b1 = c and b3 ∈ {a, b, d}. By an argument like that
as above, when a1 ∨ a2 ∨ a3 = d the result holds.

Example 3.4. Let £1 = {0, a, b, c, 1} be a lattice with the relations 0 ≤ a ≤ c ≤ 1, 0 ≤ b ≤ c ≤ 1, a∨b = c
and a∧ b = 0. Suppose that £ = £1 ×£1, P = {1, c} × {1} and S = {0, a} × {0, a}; so P is a filter of £
with P ∩S = ∅. Then P is a weakly S-2-absorbing filter. Indeed, let (1, 1) ̸= (a1, b1)∨c (a2, b2)∨c (a3, b3) =
(c, 1) ∈ P for some (a1, b1), (a2, b2), (a3, b3) ∈ £. Then (a, a) ∈ S, b1 ∨ b2 ∨ b3 = 1 and a1 ∨ a2 ∨ a3 = c.
Since b1 ∨2 ∨b3 = 1, we conclude that there exists i ∈ {1, 2, 3} such that bi = 1, say b1 = 1. Then either
(a, a) ∨c (a1, b1) ∨c (a2, b2) ∈ P or (a, a) ∨c (a1, b1) ∨c (a3, b3) ∈ P , as needed.

On the other hand, P is not a weakly 2-absorbing filter since (1, 1) ̸= (a, b)∨(b, 0)∨(0, 1) = (c, 1) ∈ P
but neither (a, b) ∨ (b, 0) = (c, b) ∈ P nor (a, b) ∨ (0, 1) = (a, 1) ∈ P nor (b, 0) ∨ (0, 1) = (b, 1) ∈ P . Thus
a weakly S-2-absorbing filter need not be a weakly 2-absorbing filter.

Example 3.5. Let S′ ⊆ S be join closed subsets of £ and P a filter of £ disjoint with S. It s clear
that if P is a weakly S′-2-absorbing filter of £, then P is a weakly S-2-absorbing filter. However, the
converse is not true in general. Indeed, suppose that £ is the lattice as in Example 3.4 and let S′ =
{(0, 0)} ⊆ S = {0, a} × {0, a}. Then P = {1, c} × {1} is a weakly S-2-absorbing filter of £ but not a
weakly S′-2-absorbing filter of £.

Proposition 3.6. Let S′ ⊆ S be join closed subsets of £ such that for any s ∈ S, there exists t ∈ S
satisfying s ∨ t ∈ S′. If P is a weakly S-2-absorbing filter of £, then P is a weakly S′-2-absorbing filter
of £.

Proof. Let x, y, z ∈ £ such that 1 ̸= x ∨ y ∨ z ∈ P . Then there exists s ∈ S such that s ∨ x ∨ y ∈ P
or s ∨ x ∨ z ∈ P or s ∨ y ∨ z ∈ P . By the hypothesis, there exists a t ∈ S such that s ∨ t ∈ S′ and then
s ∨ t ∨ x ∨ y ∈ P or s ∨ t ∨ x ∨ z ∈ P or s ∨ t ∨ y ∨ z ∈ P , as P is a filter. This shows that P is a weakly
S′-2-absorbing filter.

Theorem 3.7. If S is a join closed subset of £, then the intersection of two weakly S-prime filter is a
weakly S-2-absorbing filter.

Proof. Let P1, P2 be two weakly S-prime filters of £ and P = P1 ∩ P2. Let a, b, c ∈ £ such that
1 ̸= a ∨ b ∨ c ∈ P . Since P1 is weakly S-prime and 1 ̸= a ∨ b ∨ c ∈ P1, there exists s1 ∈ S such that

240



S. Ebrahimi Atani / J. Algebra Comb. Discrete Appl. 12(3) (2025) 237–248

s1 ∨ a ∈ P1 or s1 ∨ b ∨ c ∈ P1. Again as P2 is weakly S-prime and 1 ̸= a ∨ b ∨ c ∈ P2 there exists s2 ∈ S
such that s2 ∨ b ∈ P2 or s2 ∨ a ∨ c ∈ P2. We split the proof into four cases.

Case 1: s1 ∨ a ∈ P1, s1 ∨ b ∨ c /∈ P1, s2 ∨ b ∈ P2 and s2 ∨ a ∨ c /∈ P2. Now, put s = s1 ∨ s2 ∈ S.
Then s ∨ a ∨ b ∈ P1 ∩ P2 = P , as P1 and P2 are filters.

Case 2: s1 ∨ a ∈ P1, s1 ∨ b ∨ c /∈ P1, s2 ∨ b /∈ P2 and s2 ∨ a ∨ c ∈ P2. Set s = s1 ∨ s2. Then
s ∨ a ∨ c ∈ P .

Case 3: s1∨a /∈ P1, s1∨b∨c ∈ P1, s2∨b ∈ P2 and s2∨a∨c /∈ P2. It is easy to see that s∨b∨c ∈ P ,
where s = s1 ∨ s2.

Case 4: s1 ∨ a /∈ P1, s1 ∨ b ∨ c ∈ P1, s2 ∨ b /∈ P2 and s2 ∨ a ∨ c ∈ P2. If s1 ∨ a ∨ c ∈ P1, then
s ∨ a ∨ c ∈ P and so we are done, where s = s1 ∨ s2. So we may assume that s1 ∨ a ∨ c /∈ P1. Since
P1 is weakly S-prime, 1 ̸= a ∨ b ∨ c ∈ P1 and s1 ∨ a ∨ c /∈ P1, we conclude that s1 ∨ b ∈ P1. Similarly,
s2 ∨ a ∈ P2. Therefore, s ∨ a ∨ b ∈ P , where s = s1 ∨ s2. Thus P is weakly S-2-absorbing.

An element x of £ is called identity join of a lattice £, if there exists 1 ̸= y ∈ £ such that x∨ y = 1.
The set of all identity joins of a lattice £ is denoted by I(£).

Proposition 3.8. Let P be a filter of £, S a join closed subset of £ disjoint with P and S ∩ I(£) = ∅.
The following assertions are equivalent:

(1) P is a weakly S-2-absorbing filter of £;

(2) (P :£ s) is a weakly 2-absorbing filter of £ for some s ∈ S.

Proof. (1) ⇒ (2) Let P be a weakly S-2-absorbing filter of £. Then we keep in mind that there exists
a fixed s ∈ S that satisfies the weakly S-2-absorbing condition. Now, we show that (P :£ s) is a weakly
2-absorbing filter of £. Let x, y, z ∈ £ such that 1 ̸= x ∨ y ∨ z ∈ (P :£ s) (so x ∨ y ∨ z ∨ s ̸= 1, as
S ∩ I(£) = ∅). Then 1 ̸= x ∨ y ∨ z ∨ s ∈ P gives s ∨ x ∨ y ∈ P or s ∨ x ∨ (s ∨ z) = s ∨ x ∨ z ∈ P or
s ∨ y ∨ (s ∨ z) = s ∨ y ∨ z ∈ P which means that x ∨ y ∈ (p :£ s) or x ∨ z ∈ (P :£ s) or y ∨ z ∈ (P :£ s).
Thus (P :£ s) is a weakly 2-absorbing filter of £. The implication of (2) ⇒ (1) is clear.

The following theorem provides some condition under which a weakly S-2-absorbing filter is S-2-
absorbing.

Theorem 3.9. Let S be a join closed subset of £ and P be a weakly S-2-absorbing filter of £. If P is
not S-2-absorbing, then P = {1}. In particular, the only weakly S-2-absorbing filters of £ that are not
S-2-absorbing can only be {1}.

Proof. Let P be a weakly S-2-absorbing filter of £ and assume that s ∈ S satisfies weakly S-2-
absorbing condition. On the contrary, assume that P ̸= {1}. It suffices to show that P is S-2-absorbing.
Let a, b, c ∈ £ such that a∨b∨c ∈ P . If 1 ̸= a∨b∨c ∈ P , then P is weakly S-2-absorbing gives s∨a∨b ∈ P
or s∨ a∨ c ∈ P or s∨ b∨ c ∈ P . Now, suppose that a∨ b∨ c = 1. Since P ̸= {1}, there exists p ∈ P such
that p ̸= 1. Then 1 ̸= (a∧ p)∨ (b∧ p)∨ (c∧ p) = p ∈ P gives s∨ (a∧ p)∨ (b∧ p) = (s∨ a∨ b)∧ (s∨ p) ∈ P
or (s ∨ a ∨ c) ∧ (s ∨ p) ∈ P or (s ∨ b ∨ c) ∧ (s ∨ p) ∈ P . Therefore, s ∨ a ∨ b ∈ P or s ∨ a ∨ c ∈ P or
s ∨ b ∨ c ∈ P by lemma 2.1 (1). This shows that P is an S-2-absorbing filter, as required.

Corollary 3.10. ([6], Theorem 2.2) If P is a weakly 2-absorbing filter that is not 2-absorbing, then
P = {1}.

Proof. Take S = {0} in Theorem 3.9.

Theorem 3.11. Let S be a join closed subset of £ and P be a weakly S-2-absorbing filter of £. If
a, b, c ∈ £ with a ∨ b ∨ c = 1 and s ∨ a ∨ b, s ∨ a ∨ c, s ∨ b ∨ c /∈ P for any s ∈ S, then the following hold:

(1) (a ∨ b) ∨ P = (a ∨ c) ∨ P = (b ∨ c) ∨ P = {1};
(2) a ∨ P = b ∨ P = c ∨ P = {1}.
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Proof. (1) On the contrary, assume that (a ∨ b) ∨ P ̸= {1}. Then a ∨ b ∨ p ̸= 1 for some p ∈ P . Since
1 ̸= a∨b∨p = (a∨b)∨(p∧c) ∈ P , there exists s ∈ S such that (s∨a)∨(c∧p) = (s∨a∨c)∧(s∨a∨p) ∈ P
or (s ∨ b) ∨ (c ∧ p) = (s ∨ b ∨ c) ∧ (s ∨ b ∨ p) ∈ P or s ∨ a ∨ b ∈ P which implies that s ∨ a ∨ c ∈ P or
s ∨ b ∨ c ∈ P or s ∨ a ∨ b ∈ P by Lemma 2.1 (1) which is impossible. Thus (a ∨ b) ∨ P = {1}. Similarly,
(a ∨ c) ∨ P = (b ∨ c) ∨ P = {1}.

(2) If a ∨ P ̸= {1}, then a ∨ p ̸= 1 for some p ∈ P . Since 1 ̸= a ∨ p = a ∨ (b ∧ p) ∨ (c ∧ p) ∈ P ,
we conclude that there exists s ∈ S such that (s ∨ a) ∨ (b ∧ p) = (s ∨ a ∨ b) ∧ (s ∨ a ∨ p) ∈ P or
(s ∨ a) ∨ (c ∧ p) = (s ∨ a ∨ c) ∧ (s ∨ a ∨ p) ∈ P or s ∨ (b ∧ p) ∨ (c ∧ p) = (s ∨ b ∨ c) ∧ (s ∨ p) ∈ P which
gives s ∨ a ∨ c ∈ P or s ∨ b ∨ c ∈ P or s ∨ a ∨ b ∈ P by Lemma 2.1 (1) which is a contradiction. Hence
a ∨ P = {1}. Similarly, b ∨ P = c ∨ P = {1}.

We next give two other characterizations of weakly S-2-absorbing filters.

Theorem 3.12. Let P be a filter of £ and S a join closed subset of £ disjoint with P . The following
assertions are equivalent:

(1) P is a weakly S-2-absorbing filter of £;

(2) For any a, b ∈ £, there exists s ∈ S such that if s∨ a∨ b /∈ P , then (P :£ a∨ b) = (1 :£ a∨ b) or
(P :£ a ∨ b) ⊆ (P :£ s ∨ a) or (P :£ a ∨ b) ⊆ (P :£ s ∨ b);

(3) For any a, b ∈ £ and for any filter F of £, there exists s ∈ S such that, if {1} ≠ (a∨ b)∨F ⊆ P ,
then s ∨ a ∨ b ∈ P or F ⊆ (P :£ s ∨ a) or F ⊆ (P :£ s ∨ b).

Proof. (1) ⇒ (2) Let P be a weakly S-2-absorbing filter of £ and assume that s ∈ S satisfies weakly
S-2-absorbing condition. Suppose that (P :£ a ∨ b) ̸= (1 :£ a ∨ b). Since (1 :£ a ∨ b) ⫋ (P :£ a ∨ b), we
conclude that there exists e ∈ (P :£ a ∨ b) such that a ∨ b ∨ e ̸= 1. Let z ∈ (P :£ a ∨ b). If a ∨ b ∨ z ̸= 1,
then s ∨ a ∨ z ∈ P or s ∨ b ∨ z ∈ P by (1), and so z ∈ (P :£ s ∨ a) or z ∈ (P :£ s ∨ b). Now, suppose
that a ∨ b ∨ z = 1. Then 1 ̸= a ∨ b ∨ e = (a ∨ b ∨ e) ∧ (a ∨ b ∨ z) = (a ∨ b) ∨ (z ∧ e) ∈ P implies that
(s ∨ a) ∨ (z ∧ e) = (s ∨ a ∨ z) ∧ (s ∨ a ∨ e) ∈ P or (s ∨ b) ∨ (z ∧ e) = (s ∨ b ∨ z) ∧ (s ∨ b ∨ e) ∈ P ;
hence s ∨ a ∨ z ∈ P or ∨b ∨ z ∈ P by Lemma 2.1 (1). Thus z ∈ (P :£ s ∨ a) or z ∈ (P :£ s ∨ b), i.e.
(P :£ a ∨ b) ⊆ (P :£ s ∨ a) or (P :£ a ∨ b) ⊆ (P :£ s ∨ b).

(2) ⇒ (3) Let a, b ∈ £ and F a filter of £ such that {1} ̸= (a ∨ b) ∨ F ⊆ P and suppose that s
has the stated property in (2). Assume that s ∨ a ∨ b /∈ P . Since (a ∨ b) ∨ F ⊆ P , we conclude that
F ⊆ (P :£ a∨ b) and by (2), F ⊆ (1 :£ a∨ b) or F ⊆ (P :£ s∨ a) or F ⊆ (P :£ s∨ b). If F ⊆ (1 :£ a∨ b),
then (a ∨ b) ∨ F = {1} which is impossible. Therefore, either F ⊆ (P :£ s ∨ a) or F ⊆ (P :£ s ∨ b).

(3) ⇒ (1) Let a, b, c ∈ £ such that 1 ̸= a ∨ b ∨ c ∈ P . Then {1} ≠ (a ∨ b) ∨ T ({c}) ⊆ P gives
s∨ a∨ b ∈ P or T ({c}) ⊆ (P :£ s∨ a) or T ({c}) ⊆ (P :£ s∨ b) by (3) which implies that s∨ a∨ b ∈ P or
s ∨ a ∨ c ∈ P or s ∨ b ∨ c ∈ P , i.e. (1) holds.

Corollary 3.13. For proper filter P of £, The following assertions are equivalent:

(1) p is a weakly 2-absorbing filter of £;

(2) For any a, b ∈ £, if a ∨ b /∈ P , then (P :£ a ∨ b) = (1 :£ a ∨ b) or (P :£ a ∨ b) ⊆ (P :£ a) or
(P :£ a ∨ b) ⊆ (P :£ b);

(3) For any a, b ∈ £ and for any filter F of £, if {1} ≠ (a ∨ b) ∨ F ⊆ P , then a ∨ b ∈ P or
F ⊆ (P :£ a) or F ⊆ (P :£ b).

Proof. Take S = {0} in Theorem 3.12.

Lemma 3.14. Let P be a filter of £ and S a join closed subset of £ disjoint with P . The following
assertions are equivalent:

(1) P is a weakly S-2-absorbing filter of £;

(2) There exists an s ∈ S such that for any a, b ∈ £, if {1} ̸= (a ∨ b) ∨ F ⊆ P for some filter F of
£, then s ∨ a ∨ b ∈ P or F ⊆ (P :£ s ∨ a) or F ⊆ (P :£ s ∨ b).
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Proof. (1) ⇒ (2) By the hypothesis, we keep in mind that there exists a fixed s ∈ S that satisfies the
weakly S-2-absorbing condition. Let a, b ∈ £ such that {1} ≠ (a ∨ b) ∨ F ⊆ P for some filter F of £.
Suppose that s ∨ a ∨ b /∈ P . Now, it suffices to show that F ⊆ (P :£ s ∨ a) or F ⊆ (P :£ s ∨ b). Let
f ∈ F (so a ∨ b ∨ f ∈ P ). If a ∨ b ∨ f ̸= 1, then s ∨ a ∨ f ∈ P or s ∨ b ∨ f ∈ P which implies that
F ⊆ (P :£ s∨ a) or F ⊆ (P :£ s∨ b). So suppose that a∨ b∨ f = 1. Since (a∨ b)∨F ̸= {1}, we conclude
that 1 ̸= a ∨ b ∨ f1 ∈ P for some f1 ∈ F ; so s ∨ a ∨ f1 ∈ P or s ∨ b ∨ f1 ∈ P . Now, we put f2 = f ∧ f1.
Then 1 ̸= a∨ b∨ f2 = a∨ b∨ f1 ∈ P which gives s∨ a∨ f2 ∈ P or s∨ b∨ f2 ∈ P . We split the proof into
three cases.

Case 1: s ∨ a ∨ f1 ∈ P and s ∨ b ∨ f1 ∈ P . Since s ∨ a ∨ f2 = (s ∨ a ∨ f) ∧ (s ∨ a ∨ f1) ∈ P or
s ∨ b ∨ f2 = (s ∨ b ∨ f) ∧ (s ∨ b ∨ f1) ∈ P , we get that s ∨ a ∨ f ∈ P or s ∨ b ∨ f ∈ P by Lemma 2.1 (1);
hence F ⊆ (P :£ s ∨ a) or F ⊆ (P :£ s ∨ b).

Case 2: s∨a∨f1 ∈ P and s∨b∨f1 /∈ P . On the contrary, assume that s∨a∨f /∈ P and s∨b∨f /∈ P .
Then s∨a∨f2 = (s∨a∨f)∧ (s∨a∨f1) /∈ P by Lemma 2.1 (1); so s∨b∨f2 = (s∨b∨f)∧ (s∨b∨f1) ∈ P
which is impossible by Lemma 2.1 (1). Thus s ∨ a ∨ f ∈ P or s ∨ b ∨ f ∈ P and so F ⊆ (P :£ s ∨ a) or
F ⊆ P :£ s ∨ b).

Case 3: s ∨ a ∨ f1 /∈ P and s ∨ b ∨ f1 ∈ P . This proof is similar to that in Case (2) and we omit it.

(2) ⇒ (1) Let x, y, z ∈ £ such that 1 ̸= x ∨ y ∨ z ∈ P . Then {1} ̸= (x ∨ y) ∨ T ({z}) ⊆ P gives
s ∨ x ∨ y ∈ P or T ({z}) ⊆ (P :£ s ∨ x) or T ({z}) ⊆ (P :£ s ∨ y) by (2) which implies that s ∨ x ∨ y ∈ P
or s ∨ x ∨ z ∈ P or s ∨ y ∨ z ∈ P , i.e. (1) holds.

Lemma 3.15. Let P be a filter of £ and S a join closed subset of £ disjoint with P . The following
assertions are equivalent:

(1) P is a weakly S-2-absorbing filter of £;

(2) There exists an s ∈ S such that for any filters F,G of £ and a ∈ £, if {1} ≠ a ∨ (F ∨G) ⊆ P ,
then F ⊆ (P :£ s ∨ a) or G ⊆ (P :£ s ∨ a) or F ∨G ⊆ (P :£ s).

Proof. (1) ⇒ (2) Let P be a weakly S-2-absorbing filter of £ and assume that s ∈ S satisfies weakly S-
2-absorbing condition. Let F,G be filters of £ and a ∈ £ such that {1} ≠ a∨ (F ∨G) ⊆ P . Suppose that
(s∨a)∨F ⊈ P . So s∨a∨f /∈ P for some f ∈ F . We claim that there exists b ∈ F such that (a∨b)∨G ̸= {1}
and s∨a∨ b /∈ P . Since a∨ (F ∨G) ̸= {1}, we conclude that (a∨f1)∨G ̸= {1} for some f1 ∈ F . Suppose
that s ∨ a ∨ f1 /∈ P or (a ∨ f) ∨G ̸= {1}. If s ∨ a ∨ f1 /∈ P , then we put b = f1 and so s ∨ a ∨ b /∈ P and
(a ∨ b) ∨G ̸= {1}. If (a ∨ f) ∨G ̸= {1}, then we put b = f and so s ∨ a ∨ b /∈ P and (a ∨ b) ∨G ̸= {1}.
Hence, by putting b = f or b = f1, we get the result. Therefore, suppose that s ∨ a ∨ f1 ∈ P and
(a ∨ f) ∨G = {1}. It follows that {1} ̸= a ∨ (f ∧ f1) ∨G = ((a ∨ f1) ∧ (a ∨ f)) ∨G = (a ∨ f1) ∨G ⊆ P
and (s ∨ a) ∨ (f ∧ f1) = (s ∨ a ∨ f1) ∧ (s ∨ a ∨ f) /∈ P by Lemma 2.1 (1). So we find b ∈ F such that
(a ∨ b) ∨G ̸= {1} and s ∨ a ∨ b /∈ P .

Since {1} ̸= (a ∨ b) ∨ G ⊆ a ∨ (F ∨ G) ⊆ P and s ∨ a ∨ b /∈ P , we obtain G ⊆ (P :£ s ∨ a) or
G ⊆ (P :£ s ∨ b) by Lemma 3.14. If G ⊆ (P :£ s ∨ a), then we are done. So we may assume that
G ⊈ (P :£ s ∨ a) and so G ⊆ (P :£ s ∨ b). Let c ∈ F . If (a ∨ c) ∨ G ̸= {1}, then by Lemma 3.14,
c ∈ (P :£ s ∨ a) or c ∈ (P :£ s ∨G) since (s ∨ a) ∨G ⊈ P ; hence F ⊆ (P :£ s ∨ a) or F ∨G ⊆ (P :£ s),
i.e. (2) holds. If (a∨ c)∨G = {1}, then {1} ≠ a∨ (b∧ c)∨G = ((a∨ b)∧ (a∨ c))∨G = (a∨ b)∨G ⊆ P .
Now, Lemma 3.14 gives (s∨ a)∨ (b∧ c) ∈ P or s∨ (b∧ c)∨G ⊆ P which implies that b∧ c ∈ (P :£ s∨ a)
or b ∧ c ∈ (P :£ s ∨ G). Now assume that b ∧ c ∈ (P :£ s ∨ a) and b ∧ c /∈ (P :£ s ∨ G). Consider
{1} ≠ a∨ (b∧ c)∨G = ((a∨ b)∧ (a∨ c))∨G = (a∨ b)∨G ⊆ P . By Lemma 3.14, (s∨a∨ b)∧ (s∨a∨ c) =
(s ∨ a) ∨ (b ∧ c) ∈ P or s ∨ (b ∧ c) ∨ G ⊆ P since (s ∨ a) ∨ G ⊈ P ; hence s ∨ a ∨ b ∈ P by Lemma 2.1
(1) or b ∧ c ∈ (P :£ s ∨ G), a contradiction. Thus b ∧ c ∈ (P :£ s ∨ G) and so s ∨ (b ∧ c) ∨ G ⊆ P . Let
g ∈ G. Then s ∨ (b ∧ c) ∨ g = (s ∨ b ∨ g) ∧ (s ∨ c ∨ g) ∈ P gives s ∨ c ∨ g ∈ P by lemma 2.1 (1) and so
c ∈ (P :£ s ∨G) which implies that F ⊆ (P :£ s ∨G). Therefore, F ∨G ⊆ (P :£ s).

(2) ⇒ (1) Let a, b, c ∈ £ such that 1 ̸= a ∨ b ∨ c ∈ P . Set F = T ({b}) and G = T ({c}). Then
{1} ≠ a∨(F∨G) ⊆ P gives s∨a∨b ∈ (s∨a)∨F ⊆ P or s∨a∨c ∈ (s∨a)∨G ⊆ P or s∨b∨c ∈ s∨(F∨G) ⊆ P
by (2), as required.
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Proposition 3.16. Let P be a filter of £ and S a join closed subset of £ disjoint with P . The following
assertions are equivalent:

(1) P is a weakly S-2-absorbing filter of £;

(2) There exists an s ∈ S such that for any filters F,G,K of £, if {1} ̸= F ∨ G ∨ K ⊆ P , then
F ∨G ⊆ (P :£ s) or F ∨K ⊆ (P :£ s) or G ∨K ⊆ (P :£ s).

Proof. (1) ⇒ (2) Let P be a weakly S-2-absorbing filter of £ and assume that s ∈ S satisfies weakly
S-2-absorbing condition. Let F,G,K be filters of £ such that {1} ≠ F ∨ G ∨ K ⊆ P ; so {{1} ≠
g∨ (F ∨K) ⊆ P for some g ∈ G. By Lemma 3.15, (s∨ g)∨F ⊆ P or (s∨ g)∨G ⊆ P or s∨ (F ∨K) ⊆ P .
If s ∨ (F ∨K) ⊆ P , then we are done and so assume that s ∨ (F ∨K) ⊈ P . Therefore, we have either
(s ∨ g) ∨ F ⊆ P or (s ∨ g) ∨ K ⊆ P . We claim that either s ∨ (F ∨ G) ⊆ P or s ∨ (G ∨ K) ⊆ P . Let
g1 ∈ G. If {1} ̸= g1 ∨ (F ∨ K) ⊆ P , then by Lemma 3.15, (s ∨ g1) ∨ F ⊆ P or (s ∨ g1) ∨ K ⊆ P
since s ∨ (F ∨ K) ⊈ P which implies that g1 ∈ (P :£ s ∨ F ) or g1 ∈ (P :£ s ∨ K). It follows that
F ∨ G ⊆ (P :£ s) or G ∨ K ⊆ (P :£ s), i.e. we get the claim. Now let g1 ∨ (F ∨ K) = {1}. Since
{1} ̸= (g ∧ g1) ∨ (F ∨ K) = (g1 ∨ (F ∨ K)) ∧ (g ∨ (F ∨ K)) = g ∨ (F ∨ K) ⊆ P , we conclude that
s ∨ (g ∧ g1) ∨ F ⊆ P or s ∨ (g ∧ g1) ∨K ⊆ P by Lemma 3.15. , we split the proof into four cases.

Case 1: (s ∨ g) ∨ F ⊆ P and s ∨ (g ∧ g1) ∨ F ⊆ P .

Since s ∨ (g ∧ g1) ∨ f = (s ∨ g ∨ f) ∧ (s ∨ g1 ∨ f) ∈ P for all f ∈ F , we conclude that s ∨ g1 ∨ f ∈ P
by Lemma 2.1 (1) which implies that (s ∨ g1) ∨ F ⊆ P ; hence s ∨ (F ∨G) ⊆ P .

Case 2: (s ∨ g) ∨K ⊆ P and s ∨ (g ∧ g1) ∨K ⊆ P .

Since s ∨ (g ∧ g1) ∨ k = (s ∨ g ∨ k) ∧ (s ∨ g1 ∨ k) ∈ P for all k ∈ K, we conclude that s ∨ g1 ∨ k ∈ P
by Lemma 2.1 (1) which implies that (s ∨ g1) ∨K ⊆ P ; hence s ∨ (G ∨K) ⊆ P .

Case 3: (s ∨ g) ∨ F ⊆ P , (s ∨ g) ∨K ⊈ P , s ∨ (g ∧ g1) ∨K ⊆ P and s ∨ (g ∧ g1) ∨ F ⊈ P .

Since (s ∨ g) ∨ K ⊈ P , we conclude that s ∨ g ∨ k /∈ P for some k ∈ K. Then by the hypothesis,
s ∨ (g ∧ g1) ∨ k = (s ∨ g ∨ k) ∧ (s ∨ g1 ∨ k) ∈ P which implies that s ∨ g ∨ k ∈ P by Lemma 2.1 (1)
and this is not possible. Hence since (s ∨ g) ∨ F ⊆ P or (s ∨ g) ∨ K ⊆ P or s ∨ (g ∧ g1) ∨ F ⊆ P or
s ∨ (g ∧ g1) ∨K ⊆ P , there must be any one of the following holds:

(i) (s∨ g)∨K ⊆ P and s∨ (g ∧ g1)∨K ⊆ P and s∨ (g ∧ g1)∨F ⊈ P , then g1 ∈ (P :£ s∨K); hence
G ∨K ⊆ (P :£ s).

(ii) (s ∨ g) ∨ F ⊆ P and (s ∨ g) ∨K ⊈ P and s ∨ (g ∧ g1) ∨ F ⊆ P , then g1 ∈ (P :£ s ∨ F ); hence
G ∨ F ⊆ (P :£ s).

Case 4: s ∨ (g ∧ g1) ∨ F ⊆ P , s ∨ (g ∧ g1) ∨ K ⊈ P , (s ∨ g) ∨ K ⊆ P and (s ∨ g) ∨ F ⊈ P .
By an argument like that in the Case (3), we get g1 ∈ (P :£ s ∨ F ) or g1 ∈ (P :£ s ∨ K). Therefore
F ∨G ⊆ (P :£ s) or G ∨K ⊆ (P :£ s).

(2) ⇒ (1) Let a, b, c ∈ £ such that 1 ̸= a ∨ b ∨ c ∈ P . Set F = T ({b}), G = T ({b}) and K = T ({c}).
Then {1} ̸= F ∨ G ∨ K ⊆ P gives s ∨ a ∨ b ∈ s ∨ (F ∨ G) ⊆ P or s ∨ a ∨ c ∈ s ∨ (F ∨ K ⊆ P or
s ∨ b ∨ c ∈ s ∨ (G ∨K) ⊆ P by (2), as required.

The next theorem gives a more explicit description of the weakly S-2-absorbing filters of £.

Theorem 3.17. Let P be a filter of £ and S a join closed subset of £ disjoint with P . The following
assertions are equivalent:

(1) P is a weakly S-2-absorbing filter of £;

(2) There exists an s ∈ S such that for any a, b ∈ £, if {1} ̸= (a ∨ b) ∨ F ⊆ P for some filter F of
£, then s ∨ a ∨ b ∈ P or F ⊆ (P :£ s ∨ a) or F ⊆ (P :£ s ∨ b).

(3) There exists an s ∈ S such that for any filters F,G of £ and a ∈ £, if {1} ≠ a ∨ (F ∨G) ⊆ P ,
then F ⊆ (P :£ s ∨ a) or G ⊆ (P :£ s ∨ a) or F ∨G ⊆ (P :£ s).
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(4) There exists an s ∈ S such that for any filters F,G,K of £, if {1} ̸= F ∨ G ∨ K ⊆ P , then
F ∨G ⊆ (P :£ s) or F ∨K ⊆ (P :£ s) or G ∨K ⊆ (P :£ s).

Proof. This is a direct consequence Lemma 3.14, Lemma 3.15 and Proposition 3.16.

4. Further results

We continue in this section with the investigation of the stability of weakly S-2-absorbing filters in
various lattice-theoretic constructions.

Proposition 4.1. Let S be a join closed subset of £ and P a weakly S-2-absorbing filter of £ such that
P ∩ S = ∅. If Q is a filter of £ such that Q ∩ S ̸= ∅, then P ∨Q is a weakly S-2-absorbing filter of £.

Proof. Since (P ∨ Q) ∩ S ⊆ P ∩ S = ∅, we conclude that P ∨ Q) ∩ S = ∅. Consider t ∈ Q ∩ S. Let
a, b, c ∈ £ such that 1 ̸= a ∨ b ∨ c ∈ P ∨ Q ⊆ P . Then there exists s ∈ S such that s ∨ a ∨ b ∈ P or
s∨a∨ c ∈ P or s∨ b∨ c ∈ P which gives s∨ t∨a∨ b ∈ P ∨Q or s∨ t∨a∨ c ∈ P ∨Q or s∨ t∨ b∨ c ∈ P ∨Q,
where s ∨ t ∈ S, i.e. P ∨Q is a weakly S-2-absorbing filter of £.

Proposition 4.2. Suppose that S is a join closed subset of £. Then the following assertions are equiv-
alent:

(1) Every weakly S-2-absorbing filter of £ is prime;

(2) £ is a £-domain and every S-2-absorbing filter of £ is prime.

Proof. (1) ⇒ (2) Since {1} is a weakly S-2-absorbing filter, we conclude that it is a prime filter by (1)
which gives £ is a £-domain. Finally, since every S-2-absorbing filter of £ is weakly S-2-absorbing, we
have P is prime by (1).

(2) ⇒ (1) Let P be a weakly S-2-absorbing filter of £. It suffices to show that P is an S-2-absorbing
filter. Let a, b, c ∈ £ such that a∨b∨c ∈ P . If a∨b∨c ̸= 1, then there exists s ∈ S such that s∨a∨b ∈ P
or s ∨ a ∨ c ∈ P or s ∨ b ∨ c ∈ P . If a ∨ b ∨ c = 1, then a = 1 or b = 1 or c = 1; so s ∨ a ∨ b = 1 ∈ P or
s ∨ a ∨ c = 1 ∈ P or s ∨ b ∨ c = 1 ∈ P for every s ∈ S. Therefore, every weakly S-2-absorbing filter of £
is prime by (2).

Theorem 4.3. Let f : £ → £′ be a lattice homomorphism such that f(1) = 1 and S a join closed subset
of £. The following hold:

(1) Let £ be a complemented lattice. If f is a epimorphism and P is a weakly S-2-absorbing filter
with Ker(f) ⊆ P , then f(P ) is a weakly f(S)-2-absorbing filter of £′;

(2) If f is a monomorphism and P ′ is a weakly f(S)-2-absorbing filter of £′, then P = f−1(P ′) is
a weakly S-2-absorbing filter of £.

Proof. (1) Clearly, f(S) is a join closed subset of £′. Let c ∈ f(S) ∩ f(P ). Then c = f(p) = f(s) for
some p ∈ P and s ∈ S. By assumption, there exists p′ ∈ £ such that p∨p′ = 1 and p∧p′ = 0 which gives
f(s ∨ p′) = f(p) ∨ f(p′) = 1; hence s ∨ p′ ∈ Ker(f) ⊆ P . Since s = s ∨ (p ∧ p′) = (s ∨ p′) ∧ (s ∨ p) ∈ P ,
we conclude that s ∈ S ∩ P , a contradiction. Thus f(S) ∩ f(P ) = ∅. Let x, y, z ∈ £′ such that
1 ̸= x ∨ y ∨ z ∈ f(P ). Then there exist a, b, c ∈ £ such that x = f(a), y = f(b), z = f(c) and
1 ̸= f(a∨ b∨ c) = x∨y∨z ∈ f(P ) (so a∨ b∨ c ̸= 1) which implies that f(a∨ b∨ c) = f(q) for some q ∈ P .
By the hypothesis, q ∨ q′ = 1 and q ∧ q′ = 0 for some q′ ∈ £. Since f(a∨ b∨ c∨ q′) = 1, we conclude that
a∨ b∨ c∨ q′ ∈ Ker(f) ⊆ P ; hence 1 ̸= a∨ b∨ c = (a∨ b∨ c)∨ (q∧ q′) = (a∨ b∨ c∨ q)∧ (a∨ b∨ c∨ q′) ∈ P ,
as P is a filter. This implies that s∨ a∨ b ∈ P or s∨ a∨ c ∈ P or s∨ b∨ c ∈ P for some s ∈ S. It means
that f(s) ∨ x ∨ y ∈ f(P ) or f(s) ∨ x ∨ z ∈ f(P ) or f(s) ∨ y ∨ z ∈ f(P ). Therefore, f(P ) is a weakly
f(S)-2-absorbing filter of £′.
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(2) By assumption, there exists s ∈ S such that for all x, y, z ∈ £′, x∨y∨z ∈ P ′ implies f(s)∨x∨y ∈
P ′ or f(s)∨x∨ z ∈ P ′ or f(s)∨y∨ z ∈ P ′. Clearly, P ∩S = ∅. Let a, b, c ∈ £ such that 1 ̸= a∨ b∨ c ∈ P .
Since Ker(f) = {1} by Lemma 2.3 (2), we conclude that 1 ̸= f(a ∨ b ∨ c) = f(a) ∨ f(b) ∨ f(c) ∈ P ′; so
f(s) ∨ f(a) ∨ f(b) = f(s ∨ a ∨ b) ∈ P ′ or f(s) ∨ f(a) ∨ f(c) = f(s ∨ a ∨ c) ∈ P ′ or f(s) ∨ f(b) ∨ f(c) =
f(s ∨ b ∨ c) ∈ P ′. Hence, s ∨ a ∨ b ∈ P or s ∨ a ∨ c ∈ P or s ∨ b ∨ c ∈ P , and so P = f−1(P ′) is a weakly
S-2-absorbing filter of £.

Corollary 4.4. Let S be a join closed subset of £. If £ is a sublattice of £′ and G′ is a weakly S-2-
absorbing filter of £′, then G′ ∩£ is a weakly S-2-absorbing filter of £.

Proof. It suffices to apply Theorem 4.3 (2) to the natural injection ι : £ → £′ since ι−1(G′) =
G′ ∩£.

Let F be a filter of £ and S a join closed subset of £ disjoint with F . It is clear that SQ = {s ∧ F :
s ∈ S} is a join closed subset of £/F .

Theorem 4.5. Let S be a join closed subset of £, F and G are two filters of £ with F ⊆ G. The
following hold:

(1) Let £ be a complemented lattice. If G is a weakly S-2-absorbing filter of £, then G/F is a weakly
SQ-2-absorbing filter of £/F ;

(2) If G/F is a weakly SQ-2-absorbing filter of £/F and F is a weakly S-2-absorbing filter of £,
then G is a weakly S-2-absorbing filter of £.

Proof. (1) Assume that f : £ → £/F such that f(a) = a ∧ F and let x, y ∈ £. Then f(x ∨ y) =
(x ∨ y) ∧ F = (x ∧ F ) ∨Q (y ∧ F ) = f(x) ∨Q f(y). Similarly, f(x ∧ y) = f(x) ∧Q f(y). So f is a lattice
homomorphism from £ onto £/F and f(1) = 1 ∧ F = 1£/F . Suppose that G is a weakly S-2-absorbing
filter of £. Since Ker(f) = F ⊆ G and f is onto, we conclude that f(G) = G/F (see [8, Lemma 3.4]) is
a SQ-2-absorbing filter of £/F by Theorem 4.3 (1).

(2) Let a, b, c ∈ £ such that 1 ̸= a∨b∨c ∈ G. Then (a∧F )∨Q(b∧F )∨Q(c∧F ) = (a∨b∨c)∧F ∈ G/F .
If (a∨ b∨ c)∧F ̸= 1£/F = 1∧F , then G/F is a weakly SQ-2-absorbing gives there exists s ∈ S such that
(s∧F )∨Q (a∧F )∨Q (b∧F ) = (s∨a∨b)∧F ∈ G/F or (s∧F )∨Q (a∧F )∨Q (c∧F ) = (s∨a∨c)∧F ∈ G/F
or (s∧F )∨Q (b∧F )∨Q (c∧F ) = (s∨b∨c)∧F ∈ G/F which implies that s∨a∨b) ∈ G or s∨a∨c ∈ G or
s∨b∨c ∈ G. If (a∨b∨c)∧F = 1∧F , then there exist f1, f2 ∈ F such that (a∨b∨c)∧f1 = 1∧f2 = f2 ∈ F ;
so 1 ̸= a ∨ b ∨ c ∈ F by Lemma 2.1 (1) which gives there is an element t ∈ S such that t ∨ a ∨ b ∈ F ⊆ G
or t ∨ a ∨ c ∈ F ⊆ G or t ∨ b ∨ c ∈ F ⊆ G. This shows that G is a weakly S-2-absorbing filter of £.

Theorem 4.6. Let £ = £1 × £2 be a decomposable lattice and S = S1 × S2, where Si is a join closed
subset of £i. Suppose that P = P1 × P2, where P1 ̸= {1} is a filter of £1 and P2 ̸= {1} is a filter of £2.
Then the following assertions are equivalent:

(1) P is a weakly S-2-absorbing filter of £;

(2) P1 is a weakly S1-2-absorbing filter of £1 and P2 ∩S2 ̸= ∅ or P2 is a weakly S2-2-absorbing filter
of £2 and P1 ∩ S1 ̸= ∅ or P1 is a weakly S1-prime filter of £1 and P2 is a weakly S2-prime filter of £2.

Proof. (1) ⇒ (2) Let P be a weakly S-2-absorbing filter of £ and assume that s = (s1, s2) ∈ S satisfies
weakly S-2-absorbing condition. As P ∩ S = ∅, we get either P1 ∩ S1 = ∅ or P2 ∩ S2 = ∅. If P1 ∩ S1 ̸= ∅,
we will show that P2 is a weakly S2-2-absorbing filter of £2. Let 1 ̸= a ∨ b ∨ c ∈ P2 for some a, b, c ∈ £2.
Then (1, 1) ̸= (1, a) ∨c (1, b) ∨c (1, c) = (1, a ∨ b ∨ c) ∈ P gives s ∨c (1, a) ∨c (1, b) = (1, s2 ∨ a ∨ b) ∈ P
or s ∨c (1, a) ∨c (1, c) = (1, s2 ∨ a ∨ c) ∈ P or s ∨c (1, b) ∨c (1, c) = (1, s2 ∨ b ∨ c) ∈ P . This shows that
s2 ∨ a ∨ b ∈ P2 or s2 ∨ a ∨ c ∈ P2 or s2 ∨ b ∨ c ∈ P2. Hence, P2 is a weakly S2-2-absorbing filter of £2.
Similarly, if S2 ∩ P2 ̸= ∅, then P1 is a weakly S1-2-absorbing filter of £1.

Now, assume that S1 ∩P1 = ∅ = S2 ∩P2. We will show that P1 is a weakly S1-prime filter of £1 and
P2 is a weakly S2-prime filter of £2. Suppose that P1 is not a weakly S1-prime filter of £1. Then there
exist x, y ∈ £1 such that 1 ̸= x ∨ y ∈ P1 but s1 ∨ x, s1 ∨ y /∈ P1. Since S2 ∩ P2 = ∅, we conclude that
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s2 /∈ P2. Then (1, 1) ̸= (x, 0)∨c (0, 1)∨c (y, s2) = (x∨ y, 1) ∈ P gives s∨c (x, 0)∨c (0, 1) = (s1 ∨ x, 1) ∈ P
or s ∨c (x, 0) ∨c (y, s2) = (s1 ∨ x ∨ y, s2) ∈ P or s ∨c (0, 1) ∨c (y, s2) = (s1 ∨ y, 1) ∈ P ; so s1 ∨ x ∈ P1 or
s2 ∈ P2 or s1 ∨ y ∈ P1 which is a contradiction. Therefor, P1 is a weakly S1-prime filter of £2. Similarly,
P2 is a weakly S2-prime filter of £2.

(2) ⇒ (1) Let P1 ∩ S1 ̸= ∅ and P2 be a weakly S2-2-absorbing filter of £2. At first, note that
P ∩S = ∅. Let (1, 1) ̸= (a, x)∨c (b, y)∨c (c, z) = (a∨ b∨ c, x∨ y ∨ z) ∈ P for some (a, x), (b, y), (c, z) ∈ £.
Since P1 ∩ S1 ̸= ∅, there exists s1 ∈ S1 such that s1 ∨ v ∈ P1 for all v ∈ £1. Also, there exists s2 ∈ S2

satisfying P2 to be a weakly S2-2-absorbing filter of £2. Now, put s = (s1, s2) ∈ S. If x∨ y ∨ z ̸= 1, then
P2 is a weakly S2-2-absorbing filter gives s2∨x∨y ∈ P2 or s2∨x∨z ∈ P2 or s2∨y∨z ∈ P2. This shows that
s∨c (a, x)∨c (b, y) ∈ P or s∨c (a, x)∨c (c, z) ∈ P or s∨c (c, z)∨c (b, y) ∈ P . Now, assume that x∨y∨z = 1.
Since P2 ̸= {1}, there exists p2 ∈ P2 such that p2 ̸= 1. As 1 ̸= (x ∧ p2) ∨c (y ∧ p2) ∨c (z ∧ p2) = p2 ∈ P2,
we conclude that s2 ∨ (x ∧ p2) ∨c (y ∧ p2) = (s2 ∨ p2) ∧ (s2 ∨ x ∨ y) ∈ P2 or s2 ∨ (x ∧ p2) ∨c (z ∧ p2) =
(s2 ∨ p2)∧ (s2 ∨x∨ z) ∈ P2 or s2 ∨ (y∧ p2)∨c (z ∧ p2) = (s2 ∨ p2)∧ (s2 ∨ y∨ z) ∈ P2; hence s2 ∨x∨ y ∈ P2

or s2 ∨ x ∨ z ∈ P2 or s2 ∨ y ∨ z ∈ P2 by Lemma 2.1 (1). This implies that s ∨c (a, x) ∨c (b, y) ∈ P
or s ∨c (a, x) ∨c (c, z) ∈ P or s ∨c (c, z) ∨c (b, y) ∈ P . Hence, P is a weakly S-2-absorbing filter of £.
If P2 ∩ S2 ̸= ∅ and P1 is a weakly S1-2-absorbing filter of £1, similar argument shows that P is an
S-2-absorbing filter.

Now, suppose that for each i = 1, 2, Pi is a weakly Si-prime filter of £i. Let (1, 1) ̸= (a, x)∨c (b, y)∨c

(c, z) = (a∨ b∨ c, x∨ y ∨ z) ∈ P for some (a, x), (b, y), (c, z) ∈ £. If 1 ̸= a∨ b∨ c ∈ P1, then there exists a
fixed s1 ∈ S1 such that s1 ∨ a ∈ P1 or s1 ∨ b ∈ P1 or s1 ∨ c ∈ P1. So Suppose that a∨ b∨ c = 1. Consider
1 ̸= p1 ∈ P1. Then 1 ̸= (p1 ∧a)∨ (p1 ∧ b)∨ (p1 ∧ c) = p1 ∈ P1 gives s1 ∨ (a∧ p1) = (s1 ∨ p1)∧ (s1 ∨a) ∈ P1

or s1 ∨ (b ∧ p1) = (s1 ∨ p1) ∧ (s1 ∨ b) ∈ P1 or s1 ∨ (c ∧ p1) = (s1 ∨ p1) ∧ (s1 ∨ c) ∈ P1 which implies that
s1 ∨ a ∈ P1 or s1 ∨ b ∈ P1 or s1 ∨ c ∈ P1 by Lemma 2.1 (1). Similarly, there exists s2 ∈ S2 such that
s2∨x ∈ P2 or s2∨y ∈ P2 or s2∨z ∈ P2. Put s = (s1, s2) ∈ S. Without loss of generality, we may assume
that s1 ∨ a ∈ P1 and s2 ∨ z ∈ P2. Then s ∨c (a, x) ∨c (c, z) ∈ P . Therefore, P is an S-2-absorbing filter
of £.
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