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On generator polynomial matrices of quasi-cyclic codes
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Abstract: Using notion of generator polynomial matrices of quasi-cyclic codes, we show a necessary and sufficient
condition for these codes to be linear complementary dual. This extends the well-known result by
Yang and Massey on cyclic codes to quasi-cyclic codes. As an application we present various examples
of optimal binary LCD quasi-cyclic codes.
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1. Introduction

A linear code C with C' N C+ = {0} is called a linear complementary dual (LCD) code, where C* is
the dual code of C. The following theorem gives a necessary and sufficient condition for cyclic codes to
be LCD:

Theorem 1.1 ([11, Lemmal). Let g be a generator polynomial of a cyclic code C over a finite field F,
of length m. Then

C is LCD if and only if ged(a, g) = 1,
where a € Fylx] with ag =1 — 2™ and @ is the monic reciprocal polynomial of a.

We denote by 'C' the reversed code of a code C' which is obtained by reversing all codewords of C'
with respect to coordinate order. A code C' is reversible if C'="C. As a corollary of Theorem 1.1, it was
shown that linear complementary duality and reversibility of certain cyclic codes are equivalent:
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Corollary 1.2 (|11, Corollary]). Let C be an Fy-cyclic code of length m. Suppose ged(m,q) = 1. Then,
C is LCD if and only if C is reversible.

A linear code in ]F;”E is said to be quasi-cyclic with ¢ cyclic blocks if it is invariant under the cyclic
shift:

]F,Te > (01,0’01,17"' yClm—1,""",CL,0,Ce1 " 7Ce,m—1) —
(C1,15 "+ 5 CLm—1,C1,0,"** 1 €1, "+, Com—1,C2,0) € F*,
cf. [2],[4],[9],[10],[12]. When ¢ = 1, it is equal to a cyclic code.

Let R = F,[x] and L = R. Let M, (R) be the set of (¢ x £/)-matrices with entries in R, which is
abbreviated to My(R) if £ = ¢', and GLy(R) the set of invertible elements of M,(R).

The map p : IFZ"”Z — L/(1 — 2™)L defined by

m—1 m—1

k k

(01,0;"' yClom—1,""" ,CL0," " 7C€,m71) L E ClLgX ,- E Ce, kT
k=0 k=0

gives an [Fg-linear isomorphism, which sends quasi-cyclic codes in IFZJ"Z to R-modules in L/(1 — 2™)L.
This implies that any quasi-cyclic code C' in ]F;"e is represented by a matrix G € M;(R) such that
p(C) =LG/(1 — 2™)L. The matrix G satisfies AG = GA = (1 — 2™)I for some A € My(R), where I is
the identity matrix of M;(R). We call such G a generator polynomial matrix, and denote by C¢ the quasi-
cyclic code with G as a generator polynomial matrix. Note that Cq = Cuy g for any M € GLy(R). By
applying row transformations over R, the matrix G can be uniquely transformed to a reduced matrix, that
is, we can assume that G = (g; ;) is upper triangular, g; ; are monic polynomials and deg(g; ;) < deg(g;.;)
for any ¢ < j. If G is reduced, A = (a; ;) is automatically an upper triangular matrix with monic diagonal
entries and satisfies deg(a; ;) < deg(a;;) for any i < j.

The dual code and the reversed code of a quasi-cyclic code in Fflné are again quasi-cyclic codes in
Fm. Put
s

GL — diag (mm-‘rdeg(ai,i)) tA(aj_l) + (1 _ xm)diag(a;i),
G — {diag (merdeg(gi,i)) G(xil) + (1 - xm)diag(g;i)} J,

where diag(a; ;) is the diagonal matrix with a}; as (4,4)-entries, a;; = xde8(@ii)q, . (z71) is the reciprocal
polynomial of a;;, “A(z~!) is the transposed matrix of A(z~!) and J is the backward identity matrix of
My(R). Then Cg* = Cg1 and "Cq = Crg, and Cg is reversible (resp. self-dual) if and only if L'G = LG
(resp. LG+ = LG), cf. [6],[7],[9],[10], where these facts are proven using the same techniques in [9]. Note
that [G4 = [T;_, af; = |A]* and |'G| = £]];_, g;, = £|G|*, where |A] is the determinant of A. For
¢ =1 we have A = q and a* = ca for some c € F, \ {0}

Using the decomposition via Chinese remainder theorem, the characterization of LCD quasi-cyclic
codes was investigated in [4],[12]. For 1-generator quasi-cyclic codes, some analogies of Theorem 1.1 were
given in [2[,[3],[12]. For general quasi-cyclic codes, only a sufficient condition for the codes to be LCD was
given in [2]. In the next section, we will extend Theorem 1.1 and Corollary 1.2 to the case of quasi-cyclic
codes.

2. Results

Theorem 2.1. Let G € My(R) be the reduced generator polynomial matriz of a quasi-cyclic code of
length ml. Then

Cg is LCD if and only if there exists P € GLoy(R) such that P <G§j‘) = (é) .
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Proof. We will prove the following equivalences:

CeNCeqt ={0} = Cq+Cq" =F" (1)
< LG+LG+ =L (2)
<= There exist X,Y € My(R) such that XG +YG*+ =1 (3)
<= There exists P € GLo(R) such that P (GG]_> = <é (4)

Proof of (1): Since dimp,(Cq) + diqu(C’GL) = dimg, (F**), we have

dimp, (Cg + Ce™) = dimg, (Cg) + dimp, (Ce™) — dimg, (Ce N Ca™)
= dimp, (F7") — dimg, (Ce N Ca™),
this implies (1).
Proof of (2): Since p is an F,-linear isomorphism from IFZM to L/(1 —a2™)L, we have
Ca+Cat =F" < p(Co) + p(Ca™) = p(Fy)

— LG/(1 - 2s™L+LGH/(1—2™L=0L/(1-2™)L

— (LG+LGH) /1 —z™L=L/(1-2™L

< LG+LG" =L
Proof of (3): Obvious.

Proof of (4): For “=", put P = XY >, where B is the matrix in M;(R) such that BG+ = (1—2™)I,

(&)-()

Let us prove that P belongs to G'Ly(R). Note that dimp, (Cg) = ml — deg|G| for any code Cg in
IF;"Z. Since mf = dimg, (Cg) + dimg, (Cg™), one has ml — deg |G| — deg |G| = 0, or equivalently
deg (|(1 — 2™)I||G|71|GH|7!) = 0, and so |A| = ¢|G*| for some ¢ € Fy \ {0}. On the other hand, we

have
PGO I I I O\ (0O I
O G+ o1 -XG I) \AG O/~

Therefore |P||G||G*| = —|A||G/, that is, |P| = —c, this means P € G'Lyy(R). The converse is obvious. [

see [6, Section 5]. Then we have

When ¢/ = 1 we have G = g, G+ = a* and ged(a*,9) = 1 <= gcd(a,g) = 1, thus our theorem
agrees with Theorem 1.1.

Remark 2.2. Let J = {j€Z|1<j<2¢} and Z a subset of ¢ elements of 7, especially, Z, =
{jeZ|1<j</{}. Let |Mzz,| denote the (¢ x ¢)-minor of M € My ¢(R) determined by (Z,Zy), that
is, the determinant of the (¢ x £)-submatrix of M obtained by taking rows in Z in regular order.

Since GLg(R) is generated by row transformations over R and such transformations leave
ged{|Mz z,| | for all Z C J}

invariant, we have by Theorem 2.1 the following equivalent:

Cqis LCD <+— (éi) can be transformed by row transformations over R to (I>

O
<G)
1
G 7,7,

Therefore if ged(|A]*, |G]) = 1 then Cg is LCD. But the converse is generally not true except for £ = 1.

<:>gcd{ foraHICJ}:l.

~



N. Ojiro, H. Matsui / J. Algebra Comb. Discrete Appl. 12(3) (2025) 175-180-179

0

Example 2.3. Let ¢=2,(=2, m =4,

_(1+2? =z L (1+2?2 0
G—( 0 1+I2) andG —( £B5 ].+"E2 .

Then
1+ a2 x
G\ 0 1+a2?
GLt) | 1422 0
o 1422
Putting

2?2+t v+ 28 1 T
T 1 T 0

14 22 T 1+ 22 0 ’
+

0 1+ a2 x® 1+ 22

P =

we have P € GL4(R) and P (5_) = (é), and by Theorem 2.1, Cg is LCD.

Of course, it can be verified by the equivalent of Remark 2.2. For simplicity, denoting

€
G {i,5},Zo

by {i,j}, we have
1422 2

{172} = |G‘ = (1 —|—.7;)4, {173} = ’1 + 22 0 - x(l +1‘)2,
_ 1+£L’2 X _ 4 6 _ 0 ].+SU2 _ 4
{1,4} = 25 14 a2 =1+2"+2° {2,3} = 1422 0 =(142)%,
0 1+LE2 5 2 1 4
2ap=|5 T =0+ e? 34 =G = 1+ o)

Since ged ({1,2},...,{3,4}) =1, Cg is LCD.

In [11], Yang and Massey gave the following theorem equivalent with Theorem 1.1:

Theorem 1.1’ ([11, Theorem]). Let g € R be the reduced generator polynomial of a cyclic code of length
m. Then

Cy is LCD if and only if g = cg* for c € Fy \ {0} and ged(a,g) = 1.

For quasi-cyclic codes, the straightforward generalization of this theorem is not true. Indeed, for G
of Example 2.3 we have A =G, and so XA+ YG # [ for all X,Y € My(R).

Remark 2.4. Because the ged of two polynomials in F,[z] of degree < m can be computed in O(m log® m)

[8, Corollary 2], the confirmation of LCD property by checking P ( Ci) = (é) for some P € GLoy(R)

through elementary row operations over R can be done with O(£?>mlog®m) = O(fnlog>m). This in-
dicates that our method has less computational complexity than the conventional method shown by [5,
Proposition 1], since the complexity of computing G (*G) is O(nk?) = O(n?), where G € My ,(F,) is a
generator matrix. Further, since our method treats G € M;(R) instead of G € My, ,,(F,), the data size is
reduced by ¢/k times for £/k < 1 in many important cases.

Corollary 2.5. Let G be as in Theorem 2.1. Suppose that there exists P € GLoy(R) such that P (Gci> =

<é> Then, Cq is LCD if and only if Cg is reversible.
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Proof. By the same argument as in the proof of Theorem 2.1, we have

there exists P € GLgy(R) such that P (éi) = (é) — L'G+LG+ =L

— 'Cg + ch_ = F;nz
— "Cg N C(;l = {0}
Combining with the proof of Theorem 2.1, we have the desired assertion. O

Remark 2.6. When ¢ = 1, Cg is a cyclic code of length m, A = a and G = g with ag =1 — a2™. If
ged(m, g) = 1 then 1 — 2™ decomposes into different irreducible polynomials in F,[z], and so ged(a, g) =

ged(a*, g*) = 1. Then there exists P € GL2(R) such that P (Z*> = (é) by the same argument as in
the proof for “=" of (4). Since 'G = g* and G+ = a*, Corollary 2.5 induces Corollary 1.2.

In the following table, we will give various examples of binary LCD quasi-cyclic codes with ¢ = 2
which are obtained by applying our theorem and attain the bounds in [1, Tables 1,2|. In the table, n, k

and d mean length, dimension and minimum weight, respectively, and we write e.g. [0,2,3,8] to mean
1+ 2%+ 23 + 28 € Fafz].
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Table 1. Binary LCD quasi-cyclic codes with good and optimal parameters

n| k| d G = (g“ 9172)
0 g2,2
20| 8| 6 g1,1 =1[0,2], g1,2 = [0,3,4,5,6,7,8,9], g2,2 = [0, 10].
22|11] 6|  g1,1=1[0,1], g1,2 =[0,2,3,8], g2.2 = [0,1,2,3,4,5,6,7,8,9, 10].
24| 8| 8 g1,1 =1[0,1,2,4,5,6], g1, = [0,4], g22 =[0,1,3,4,6,7,9, 10].
24112] 6 g1,1 =1[0,1,2,3], g1,2 = [0,4,5], g2,2 = [0,1,4,5,8,9].
26(12| 8 g11=1[0,1], g1,2 =[0,1,3,7,9,10,11,12], g2.» = [0, 13].
96l13| 7 g11=1[0,1], g1,2 =[0,2,3,4,5,6,7,9],
ge,2 =10,1,2,3,4,5,6,7,8,9,10,11,12].
26114| 6 gi,1 = [0]7 gi,2 = [0737475»6797 11]7
ge.2 =[0,1,2,3,4,5,6,7,8,9,10,11,12].
28(14| 7 g1,1 =1[0,2,3], g1,2 = [0,2,4,9], 922 = [0,2,3,4,7,9,10, 11].
30(11| 9|g1,1 =[0,2,3,4,6], g1.2 = [0,3,5,8], g2.2 = [0,1,3,4,6,7,9,10,12,13].
30|12| 8| g1,1 =[0,4,6,7], 91,2 = [0,2,5,7,9,10], g2.2 = [0, 3,4,6,8,9, 10, 11].
30(15| 7 g1,1 =10,1,3,5], g1,2 = [0,3,6,9], g22 = [0,1,2,4,5,8,10].
32|16| 8| g1,1=10,1,2,3], g1,2 =[0,1,7,8,12], ga2 = [0,1,4,5,8,9,12,13].
34| 913 g1,1=1[0,1,3,6,8,9], g1, = [0,2,7,8,9,10,11,12],
ge,2 =[0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15, 16].
3417 8 g1,1 =1[0,1], g1.2 = [0,1,2,3,4,5,6,7,10,13, 14, 15,
g2,2=1[0,1,2,3,4,5,6,7,8,9,10,11,12, 13, 14, 15, 16].
a4l18| 7 g1,1 =1[0], g1,2 = [0,1,4,5,6,7,8,9,11,13,14],
ge2 =1[0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15, 16].
36114]10 g11=1[0,1,2,3,4,5], g12 = [0,1,2,6,7,8,9,10,11, 13, 16],
g2,2 =1[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15,16, 17].
36116 9 911 =10,2,4], g12 =[0,1,2,3,6,7,9, 14],
ge,2 = [0,2,4,6,8,10,12, 14, 16].
3618 8 g11=1[0,1,2], g12 = [0,2,6,7,8,11,14,15],
g2,2 =1[0,1,3,4,6,7,9,10,12,13, 15, 16].
36|20 6| g1,1=10,1,2], g1,2 = [0,1,4,5,6], g22 = [0,1,2,6,7,8,12,13, 14].
36(22| 6| g1.1=1[0], g1,2=10,1,2,3,4,5,6,9,10,11], g2» = [0,2,6,8,12, 14].
38|18| 8 g1,1=[0,1], g1,2 = [0,1,4,5,11,12,14,15], g2 » = [0, 19].
asl19| 8 g11 =1[0,1], g1, = [0,3,7,8,10, 14, 15],
ge,2 = [0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15, 16, 17, 18).
38 20 7 gi,1 = [0], gi1,2 = [0,5,77 11,12, 15]7
g2,2=10,1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15,16, 17, 18].
40(16{10 g1,1 = [0,4], g1,2 = [0,1,3,8,9,11,12,16], g22 = [0, 20].
20l20 9 91,1 =10,1,2,3], g1,2 = [0,4,5,7, 10,13, 15],
g2,2 = 1[0,1,4,5,8,9,12,13, 16, 17].
40(24| 5 91,1 =10], 912 = [0,1,3,4,5,7,12], g2.2 = [0,4, 8,12, 16].
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