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Abstract: Using notion of generator polynomial matrices of quasi-cyclic codes, we show a necessary and sufficient
condition for these codes to be linear complementary dual. This extends the well-known result by
Yang and Massey on cyclic codes to quasi-cyclic codes. As an application we present various examples
of optimal binary LCD quasi-cyclic codes.
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1. Introduction

A linear code C with C ∩C⊥ = {0} is called a linear complementary dual (LCD) code, where C⊥ is
the dual code of C. The following theorem gives a necessary and sufficient condition for cyclic codes to
be LCD:

Theorem 1.1 ([11, Lemma]). Let g be a generator polynomial of a cyclic code C over a finite field Fq

of length m. Then

C is LCD if and only if gcd(ã, g) = 1,

where a ∈ Fq[x] with ag = 1− xm and ã is the monic reciprocal polynomial of a.

We denote by rC the reversed code of a code C which is obtained by reversing all codewords of C
with respect to coordinate order. A code C is reversible if C = rC. As a corollary of Theorem 1.1, it was
shown that linear complementary duality and reversibility of certain cyclic codes are equivalent:
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Corollary 1.2 ([11, Corollary]). Let C be an Fq-cyclic code of length m. Suppose gcd(m, q) = 1. Then,
C is LCD if and only if C is reversible.

A linear code in Fmℓ
q is said to be quasi-cyclic with ℓ cyclic blocks if it is invariant under the cyclic

shift:

Fmℓ
q ∋ (c1,0, c1,1, · · · , c1,m−1, · · · , cℓ,0, cℓ,1 · · · , cℓ,m−1) 7−→

(c1,1, · · · , c1,m−1, c1,0, · · · , cℓ,1, · · · , cℓ,m−1, cℓ,0) ∈ Fmℓ
q ,

cf. [2],[4],[9],[10],[12]. When ℓ = 1, it is equal to a cyclic code.

Let R = Fq[x] and L = Rℓ. Let Mℓ,ℓ′(R) be the set of (ℓ × ℓ′)-matrices with entries in R, which is
abbreviated to Mℓ(R) if ℓ = ℓ′, and GLℓ(R) the set of invertible elements of Mℓ(R).

The map ρ : Fmℓ
q → L/(1− xm)L defined by

(c1,0, · · · , c1,m−1, · · · , cℓ,0, · · · , cℓ,m−1) 7−→

(
m−1∑
k=0

c1,kx
k, · · · ,

m−1∑
k=0

cℓ,kx
k

)
gives an Fq-linear isomorphism, which sends quasi-cyclic codes in Fmℓ

q to R-modules in L/(1 − xm)L.
This implies that any quasi-cyclic code C in Fmℓ

q is represented by a matrix G ∈ Mℓ(R) such that
ρ(C) = LG/(1− xm)L. The matrix G satisfies AG = GA = (1− xm)I for some A ∈ Mℓ(R), where I is
the identity matrix of Mℓ(R). We call such G a generator polynomial matrix, and denote by CG the quasi-
cyclic code with G as a generator polynomial matrix. Note that CG = CMG for any M ∈ GLℓ(R). By
applying row transformations over R, the matrix G can be uniquely transformed to a reduced matrix, that
is, we can assume that G = (gi,j) is upper triangular, gi,i are monic polynomials and deg(gi,j) < deg(gj,j)
for any i < j. If G is reduced, A = (ai,j) is automatically an upper triangular matrix with monic diagonal
entries and satisfies deg(ai,j) < deg(ai,i) for any i < j.

The dual code and the reversed code of a quasi-cyclic code in Fmℓ
q are again quasi-cyclic codes in

Fmℓ
q . Put

G⊥ = diag
(
xm+deg(ai,i)

)
tA(x−1) + (1− xm)diag(a∗i,i),

rG =
{
diag

(
xm+deg(gi,i)

)
G(x−1) + (1− xm)diag(g∗i,i)

}
J,

where diag(a∗i,i) is the diagonal matrix with a∗i,i as (i, i)-entries, a∗i,i = xdeg(ai,i)ai,i(x
−1) is the reciprocal

polynomial of ai,i, tA(x−1) is the transposed matrix of A(x−1) and J is the backward identity matrix of
Mℓ(R). Then CG

⊥ = CG⊥ and rCG = CrG, and CG is reversible (resp. self-dual) if and only if LrG = LG
(resp. LG⊥ = LG), cf. [6],[7],[9],[10], where these facts are proven using the same techniques in [9]. Note
that |G⊥| =

∏ℓ
i=1 a

∗
i,i = |A|∗ and |rG| = ±

∏ℓ
i=1 g

∗
i,i = ±|G|∗, where |A| is the determinant of A. For

ℓ = 1 we have A = a and a∗ = c ã for some c ∈ Fq \ {0}.
Using the decomposition via Chinese remainder theorem, the characterization of LCD quasi-cyclic

codes was investigated in [4],[12]. For 1-generator quasi-cyclic codes, some analogies of Theorem 1.1 were
given in [2],[3],[12]. For general quasi-cyclic codes, only a sufficient condition for the codes to be LCD was
given in [2]. In the next section, we will extend Theorem 1.1 and Corollary 1.2 to the case of quasi-cyclic
codes.

2. Results

Theorem 2.1. Let G ∈ Mℓ(R) be the reduced generator polynomial matrix of a quasi-cyclic code of
length ml. Then

CG is LCD if and only if there exists P ∈ GL2ℓ(R) such that P

(
G
G⊥

)
=

(
I
O

)
.
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Proof. We will prove the following equivalences:

CG ∩ CG
⊥ = {0} ⇐⇒ CG + CG

⊥ = Fmℓ
q (1)

⇐⇒ LG+ LG⊥ = L (2)

⇐⇒ There exist X,Y ∈ Mℓ(R) such that XG+ Y G⊥ = I (3)

⇐⇒ There exists P ∈ GL2ℓ(R) such that P

(
G
G⊥

)
=

(
I
O

)
. (4)

Proof of (1): Since dimFq (CG) + dimFq (CG
⊥) = dimFq (Fmℓ

q ), we have

dimFq
(CG + CG

⊥) = dimFq
(CG) + dimFq

(CG
⊥)− dimFq

(CG ∩ CG
⊥)

= dimFq
(Fmℓ

q )− dimFq
(CG ∩ CG

⊥),

this implies (1).
Proof of (2): Since ρ is an Fq-linear isomorphism from Fmℓ

q to L/(1− xm)L, we have

CG + CG
⊥ = Fmℓ

q ⇐⇒ ρ(CG) + ρ(CG
⊥) = ρ(Fmℓ

q )

⇐⇒ LG/(1− xm)L+ LG⊥/(1− xm)L = L/(1− xm)L
⇐⇒ (LG+ LG⊥)/(1− xm)L = L/(1− xm)L
⇐⇒ LG+ LG⊥ = L.

Proof of (3): Obvious.

Proof of (4): For “⇒”, put P =

(
X Y
A −B

)
, where B is the matrix in Mℓ(R) such that BG⊥ = (1−xm)I,

see [6, Section 5]. Then we have

P

(
G
G⊥

)
=

(
I
O

)
.

Let us prove that P belongs to GL2ℓ(R). Note that dimFq
(CG) = mℓ − deg |G| for any code CG in

Fmℓ
q . Since mℓ = dimFq (CG) + dimFq (CG

⊥), one has mℓ − deg |G| − deg |G⊥| = 0, or equivalently
deg

(
|(1− xm)I||G|−1|G⊥|−1

)
= 0, and so |A| = c |G⊥| for some c ∈ Fq \ {0}. On the other hand, we

have

P

(
G O
O G⊥

)(
I I
O I

)(
I O

−XG I

)
=

(
O I
AG O

)
.

Therefore |P ||G||G⊥| = −|A||G|, that is, |P | = −c, this means P ∈ GL2ℓ(R). The converse is obvious.

When ℓ = 1 we have G = g, G⊥ = a∗ and gcd(a∗, g) = 1 ⇐⇒ gcd(ã, g) = 1, thus our theorem
agrees with Theorem 1.1.

Remark 2.2. Let J = {j ∈ Z | 1 ≤ j ≤ 2ℓ} and I a subset of ℓ elements of J , especially, I0 =
{j ∈ Z | 1 ≤ j ≤ ℓ}. Let |MI,I0 | denote the (ℓ × ℓ)-minor of M ∈ M2ℓ,ℓ(R) determined by (I, I0), that
is, the determinant of the (ℓ× ℓ)-submatrix of M obtained by taking rows in I in regular order.

Since GL2ℓ(R) is generated by row transformations over R and such transformations leave

gcd {|MI,I0
| | for all I ⊂ J }

invariant, we have by Theorem 2.1 the following equivalent:

CG is LCD ⇐⇒
(

G
G⊥

)
can be transformed by row transformations over R to

(
I
O

)
⇐⇒ gcd

{∣∣∣∣∣
(

G
G⊥

)
I,I0

∣∣∣∣∣
∣∣∣∣∣ for all I ⊂ J

}
= 1.

Therefore if gcd(|A|∗, |G|) = 1 then CG is LCD. But the converse is generally not true except for ℓ = 1.
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Example 2.3. Let q = 2, ℓ = 2, m = 4,

G =

(
1 + x2 x

0 1 + x2

)
and G⊥ =

(
1 + x2 0
x5 1 + x2

)
.

Then

(
G
G⊥

)
=

1 + x2 x
0 1 + x2

1 + x2 0
x5 1 + x2

 .

Putting

P =

x2 + x4 x+ x3 1 x
x 1 x 0

1 + x2 x 1 + x2 0
0 1 + x2 x5 1 + x2

 ,

we have P ∈ GL4(R) and P

(
G
G⊥

)
=

(
I
O

)
, and by Theorem 2.1, CG is LCD.

Of course, it can be verified by the equivalent of Remark 2.2. For simplicity, denoting

∣∣∣∣∣
(

G
G⊥

)
{i,j},I0

∣∣∣∣∣
by {i, j}, we have

{1, 2} = |G| = (1 + x)4, {1, 3} =

∣∣∣∣1 + x2 x
1 + x2 0

∣∣∣∣ = x(1 + x)2,

{1, 4} =

∣∣∣∣1 + x2 x
x5 1 + x2

∣∣∣∣ = 1 + x4 + x6, {2, 3} =

∣∣∣∣ 0 1 + x2

1 + x2 0

∣∣∣∣ = (1 + x)4,

{2, 4} =

∣∣∣∣ 0 1 + x2

x5 1 + x2

∣∣∣∣ = x5(1 + x)2, {3, 4} = |G⊥| = (1 + x)4.

Since gcd ({1, 2}, . . . , {3, 4}) = 1, CG is LCD.

In [11], Yang and Massey gave the following theorem equivalent with Theorem 1.1:

Theorem 1.1′ ([11, Theorem]). Let g ∈ R be the reduced generator polynomial of a cyclic code of length
m. Then

Cg is LCD if and only if g = cg∗ for c ∈ Fq \ {0} and gcd(a, g) = 1.

For quasi-cyclic codes, the straightforward generalization of this theorem is not true. Indeed, for G
of Example 2.3 we have A = G, and so XA+ Y G ̸= I for all X,Y ∈ Mℓ(R).

Remark 2.4. Because the gcd of two polynomials in Fq[x] of degree ≤ m can be computed in O(m log2 m)

[8, Corollary 2], the confirmation of LCD property by checking P

(
G
G⊥

)
=

(
I
O

)
for some P ∈ GL2ℓ(R)

through elementary row operations over R can be done with O(ℓ2m log2 m) = O(ℓn log2 m). This in-
dicates that our method has less computational complexity than the conventional method shown by [5,
Proposition 1], since the complexity of computing G (tG) is O(nk2) = O(n3), where G ∈ Mk,n(Fq) is a
generator matrix. Further, since our method treats G ∈ Mℓ(R) instead of G ∈ Mk,n(Fq), the data size is
reduced by ℓ/k times for ℓ/k < 1 in many important cases.

Corollary 2.5. Let G be as in Theorem 2.1. Suppose that there exists P ∈ GL2ℓ(R) such that P
(

rG
G⊥

)
=(

I
O

)
. Then, CG is LCD if and only if CG is reversible.
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Proof. By the same argument as in the proof of Theorem 2.1, we have

there exists P ∈ GL2ℓ(R) such that P

(
rG
G⊥

)
=

(
I
O

)
⇐⇒ LrG+ LG⊥ = L

⇐⇒ rCG + CG
⊥ = Fmℓ

q

⇐⇒ rCG ∩ CG
⊥ = {0}.

Combining with the proof of Theorem 2.1, we have the desired assertion.

Remark 2.6. When ℓ = 1, CG is a cyclic code of length m, A = a and G = g with ag = 1 − xm. If
gcd(m, q) = 1 then 1− xm decomposes into different irreducible polynomials in Fq[x], and so gcd(a, g) =

gcd(a∗, g∗) = 1. Then there exists P ∈ GL2(R) such that P

(
g∗

a∗

)
=

(
1
0

)
by the same argument as in

the proof for “⇒” of (4). Since rG = g∗ and G⊥ = a∗, Corollary 2.5 induces Corollary 1.2.

In the following table, we will give various examples of binary LCD quasi-cyclic codes with ℓ = 2
which are obtained by applying our theorem and attain the bounds in [1, Tables 1,2]. In the table, n, k
and d mean length, dimension and minimum weight, respectively, and we write e.g. [0, 2, 3, 8] to mean
1 + x2 + x3 + x8 ∈ F2[x].
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Table 1. Binary LCD quasi-cyclic codes with good and optimal parameters

n k d G =

(
g1,1 g1,2
0 g2,2

)
20 8 6 g1,1 = [0, 2], g1,2 = [0, 3, 4, 5, 6, 7, 8, 9], g2,2 = [0, 10].
22 11 6 g1,1 = [0, 1], g1,2 = [0, 2, 3, 8], g2,2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
24 8 8 g1,1 = [0, 1, 2, 4, 5, 6], g1,2 = [0, 4], g2,2 = [0, 1, 3, 4, 6, 7, 9, 10].
24 12 6 g1,1 = [0, 1, 2, 3], g1,2 = [0, 4, 5], g2,2 = [0, 1, 4, 5, 8, 9].
26 12 8 g1,1 = [0, 1], g1,2 = [0, 1, 3, 7, 9, 10, 11, 12], g2,2 = [0, 13].

26 13 7 g1,1 = [0, 1], g1,2 = [0, 2, 3, 4, 5, 6, 7, 9],
g2,2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

26 14 6 g1,1 = [0], g1,2 = [0, 3, 4, 5, 6, 9, 11],
g2,2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

28 14 7 g1,1 = [0, 2, 3], g1,2 = [0, 2, 4, 9], g2,2 = [0, 2, 3, 4, 7, 9, 10, 11].
30 11 9 g1,1 = [0, 2, 3, 4, 6], g1,2 = [0, 3, 5, 8], g2,2 = [0, 1, 3, 4, 6, 7, 9, 10, 12, 13].
30 12 8 g1,1 = [0, 4, 6, 7], g1,2 = [0, 2, 5, 7, 9, 10], g2,2 = [0, 3, 4, 6, 8, 9, 10, 11].
30 15 7 g1,1 = [0, 1, 3, 5], g1,2 = [0, 3, 6, 9], g2,2 = [0, 1, 2, 4, 5, 8, 10].
32 16 8 g1,1 = [0, 1, 2, 3], g1,2 = [0, 1, 7, 8, 12], g2,2 = [0, 1, 4, 5, 8, 9, 12, 13].

34 9 13 g1,1 = [0, 1, 3, 6, 8, 9], g1,2 = [0, 2, 7, 8, 9, 10, 11, 12],
g2,2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

34 17 8 g1,1 = [0, 1], g1,2 = [0, 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15],
g2,2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

34 18 7 g1,1 = [0], g1,2 = [0, 1, 4, 5, 6, 7, 8, 9, 11, 13, 14],
g2,2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

36 14 10 g1,1 = [0, 1, 2, 3, 4, 5], g1,2 = [0, 1, 2, 6, 7, 8, 9, 10, 11, 13, 16],
g2,2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

36 16 9 g1,1 = [0, 2, 4], g1,2 = [0, 1, 2, 3, 6, 7, 9, 14],
g2,2 = [0, 2, 4, 6, 8, 10, 12, 14, 16].

36 18 8 g1,1 = [0, 1, 2], g1,2 = [0, 2, 6, 7, 8, 11, 14, 15],
g2,2 = [0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16].

36 20 6 g1,1 = [0, 1, 2], g1,2 = [0, 1, 4, 5, 6], g2,2 = [0, 1, 2, 6, 7, 8, 12, 13, 14].
36 22 6 g1,1 = [0], g1,2 = [0, 1, 2, 3, 4, 5, 6, 9, 10, 11], g2,2 = [0, 2, 6, 8, 12, 14].
38 18 8 g1,1 = [0, 1], g1,2 = [0, 1, 4, 5, 11, 12, 14, 15], g2,2 = [0, 19].

38 19 8 g1,1 = [0, 1], g1,2 = [0, 3, 7, 8, 10, 14, 15],
g2,2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

38 20 7
g1,1 = [0], g1,2 = [0, 5, 7, 11, 12, 15],

g2,2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
40 16 10 g1,1 = [0, 4], g1,2 = [0, 1, 3, 8, 9, 11, 12, 16], g2,2 = [0, 20].

40 20 9
g1,1 = [0, 1, 2, 3], g1,2 = [0, 4, 5, 7, 10, 13, 15],

g2,2 = [0, 1, 4, 5, 8, 9, 12, 13, 16, 17].
40 24 5 g1,1 = [0], g1,2 = [0, 1, 3, 4, 5, 7, 12], g2,2 = [0, 4, 8, 12, 16].
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