Journal of Algebra Combinatorics Discrete Structures and Applications

On generator polynomial matrices of quasi-cyclic codes with linear complementary duals

Research Article

Received: 23 March 2024 Accepted: 7 March 2025

Norifumi Ojiro, Hajime Matsui

Abstract: Using notion of generator polynomial matrices of quasi-cyclic codes, we show a necessary and sufficient condition for these codes to be linear complementary dual. This extends the well-known result by Yang and Massey on cyclic codes to quasi-cyclic codes. As an application we present various examples of optimal binary LCD quasi-cyclic codes.

2020 MSC: 94B60, 94B15, 94B05, 11T71

Keywords: LCD code, Quasi-cyclic code, Reversible code, Optimal code, Generator polynomial matrix

Introduction 1.

A linear code C with $C \cap C^{\perp} = \{0\}$ is called a linear complementary dual (LCD) code, where C^{\perp} is the dual code of C. The following theorem gives a necessary and sufficient condition for cyclic codes to

Theorem 1.1 ([11, Lemma]). Let g be a generator polynomial of a cyclic code C over a finite field \mathbb{F}_q of length m. Then

C is LCD if and only if $gcd(\tilde{a}, g) = 1$,

where $a \in \mathbb{F}_q[x]$ with $ag = 1 - x^m$ and \tilde{a} is the monic reciprocal polynomial of a.

We denote by $^{\mathrm{r}}C$ the reversed code of a code C which is obtained by reversing all codewords of Cwith respect to coordinate order. A code C is reversible if $C = {}^{\rm r}C$. As a corollary of Theorem 1.1, it was shown that linear complementary duality and reversibility of certain cyclic codes are equivalent:

Norifumi Ojiro, Hajime Matsui; Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya, Aichi, 468-8511, Japan, (email:norifumi.ojiro@gmail.com, matsui@sci.kagoshima-u.ac.jp).

Corollary 1.2 ([11, Corollary]). Let C be an \mathbb{F}_q -cyclic code of length m. Suppose $\gcd(m,q)=1$. Then, C is LCD if and only if C is reversible.

A linear code in $\mathbb{F}_q^{m\ell}$ is said to be quasi-cyclic with ℓ cyclic blocks if it is invariant under the cyclic shift:

$$\mathbb{F}_q^{m\ell} \ni (c_{1,0}, c_{1,1}, \cdots, c_{1,m-1}, \cdots, c_{\ell,0}, c_{\ell,1} \cdots, c_{\ell,m-1}) \longmapsto (c_{1,1}, \cdots, c_{1,m-1}, c_{1,0}, \cdots, c_{\ell,1}, \cdots, c_{\ell,m-1}, c_{\ell,0}) \in \mathbb{F}_q^{m\ell},$$

cf. [2],[4],[9],[10],[12]. When $\ell = 1$, it is equal to a cyclic code.

Let $R = \mathbb{F}_q[x]$ and $\mathbb{L} = R^{\ell}$. Let $M_{\ell,\ell'}(R)$ be the set of $(\ell \times \ell')$ -matrices with entries in R, which is abbreviated to $M_{\ell}(R)$ if $\ell = \ell'$, and $GL_{\ell}(R)$ the set of invertible elements of $M_{\ell}(R)$.

The map $\rho: \mathbb{F}_q^{m\ell} \to \mathbb{L}/(1-x^m)\mathbb{L}$ defined by

$$(c_{1,0},\cdots,c_{1,m-1},\cdots,c_{\ell,0},\cdots,c_{\ell,m-1}) \longmapsto \left(\sum_{k=0}^{m-1} c_{1,k} x^k,\cdots,\sum_{k=0}^{m-1} c_{\ell,k} x^k\right)$$

gives an \mathbb{F}_q -linear isomorphism, which sends quasi-cyclic codes in $\mathbb{F}_q^{m\ell}$ to R-modules in $\mathbb{L}/(1-x^m)\mathbb{L}$. This implies that any quasi-cyclic code C in $\mathbb{F}_q^{m\ell}$ is represented by a matrix $G \in M_\ell(R)$ such that $\rho(C) = \mathbb{L}G/(1-x^m)\mathbb{L}$. The matrix G satisfies $AG = GA = (1-x^m)I$ for some $A \in M_\ell(R)$, where I is the identity matrix of $M_\ell(R)$. We call such G a generator polynomial matrix, and denote by C_G the quasi-cyclic code with G as a generator polynomial matrix. Note that $C_G = C_{MG}$ for any $M \in GL_\ell(R)$. By applying row transformations over R, the matrix G can be uniquely transformed to a reduced matrix, that is, we can assume that $G = (g_{i,j})$ is upper triangular, $g_{i,i}$ are monic polynomials and $\deg(g_{i,j}) < \deg(g_{j,j})$ for any i < j. If G is reduced, $A = (a_{i,j})$ is automatically an upper triangular matrix with monic diagonal entries and satisfies $\deg(a_{i,j}) < \deg(a_{i,j})$ for any i < j.

The dual code and the reversed code of a quasi-cyclic code in $\mathbb{F}_q^{m\ell}$ are again quasi-cyclic codes in $\mathbb{F}_q^{m\ell}$. Put

$$G^{\perp} = \operatorname{diag}\left(x^{m + \deg(a_{i,i})}\right) {}^{t}A(x^{-1}) + (1 - x^{m})\operatorname{diag}(a_{i,i}^{*}),$$
$${}^{t}G = \left\{\operatorname{diag}\left(x^{m + \deg(g_{i,i})}\right)G(x^{-1}) + (1 - x^{m})\operatorname{diag}(g_{i,i}^{*})\right\}J,$$

where $\operatorname{diag}(a_{i,i}^*)$ is the diagonal matrix with $a_{i,i}^*$ as (i,i)-entries, $a_{i,i}^* = x^{\operatorname{deg}(a_{i,i})}a_{i,i}(x^{-1})$ is the reciprocal polynomial of $a_{i,i}$, ${}^tA(x^{-1})$ is the transposed matrix of $A(x^{-1})$ and J is the backward identity matrix of $M_\ell(R)$. Then $C_G^{\perp} = C_{G^{\perp}}$ and ${}^tC_G = C_{{}^tG}$, and C_G is reversible (resp. self-dual) if and only if $\mathbb{L}^{r}G = \mathbb{L}G$ (resp. $\mathbb{L}G^{\perp} = \mathbb{L}G$), cf. [6],[7],[9],[10], where these facts are proven using the same techniques in [9]. Note that $|G^{\perp}| = \prod_{i=1}^{\ell} a_{i,i}^* = |A|^*$ and $|{}^tG| = \pm \prod_{i=1}^{\ell} g_{i,i}^* = \pm |G|^*$, where |A| is the determinant of A. For $\ell = 1$ we have A = a and $a^* = c \tilde{a}$ for some $c \in \mathbb{F}_q \setminus \{0\}$.

Using the decomposition via Chinese remainder theorem, the characterization of LCD quasi-cyclic codes was investigated in [4],[12]. For 1-generator quasi-cyclic codes, some analogies of Theorem 1.1 were given in [2],[3],[12]. For general quasi-cyclic codes, only a sufficient condition for the codes to be LCD was given in [2]. In the next section, we will extend Theorem 1.1 and Corollary 1.2 to the case of quasi-cyclic codes.

2. Results

Theorem 2.1. Let $G \in M_{\ell}(R)$ be the reduced generator polynomial matrix of a quasi-cyclic code of length ml. Then

$$C_G$$
 is LCD if and only if there exists $P \in GL_{2\ell}(R)$ such that $P\begin{pmatrix} G \\ G^{\perp} \end{pmatrix} = \begin{pmatrix} I \\ O \end{pmatrix}$.

Proof. We will prove the following equivalences:

$$C_G \cap C_G^{\perp} = \{0\} \iff C_G + C_G^{\perp} = \mathbb{F}_q^{m\ell} \tag{1}$$

$$\iff \mathbb{L}G + \mathbb{L}G^{\perp} = \mathbb{L} \tag{2}$$

$$\iff$$
 There exist $X, Y \in M_{\ell}(R)$ such that $XG + YG^{\perp} = I$ (3)

$$\iff$$
 There exists $P \in GL_{2\ell}(R)$ such that $P\begin{pmatrix} G \\ G^{\perp} \end{pmatrix} = \begin{pmatrix} I \\ O \end{pmatrix}$. (4)

Proof of (1): Since $\dim_{\mathbb{F}_q}(C_G) + \dim_{\mathbb{F}_q}(C_G^{\perp}) = \dim_{\mathbb{F}_q}(\mathbb{F}_q^{m\ell})$, we have

$$\dim_{\mathbb{F}_q}(C_G + C_G^{\perp}) = \dim_{\mathbb{F}_q}(C_G) + \dim_{\mathbb{F}_q}(C_G^{\perp}) - \dim_{\mathbb{F}_q}(C_G \cap C_G^{\perp})$$
$$= \dim_{\mathbb{F}_q}(\mathbb{F}_q^{m\ell}) - \dim_{\mathbb{F}_q}(C_G \cap C_G^{\perp}),$$

this implies (1).

Proof of (2): Since ρ is an \mathbb{F}_q -linear isomorphism from $\mathbb{F}_q^{m\ell}$ to $\mathbb{L}/(1-x^m)\mathbb{L}$, we have

$$C_G + C_G^{\perp} = \mathbb{F}_q^{m\ell} \iff \rho(C_G) + \rho(C_G^{\perp}) = \rho(\mathbb{F}_q^{m\ell})$$

$$\iff \mathbb{L}G/(1 - x^m)\mathbb{L} + \mathbb{L}G^{\perp}/(1 - x^m)\mathbb{L} = \mathbb{L}/(1 - x^m)\mathbb{L}$$

$$\iff (\mathbb{L}G + \mathbb{L}G^{\perp})/(1 - x^m)\mathbb{L} = \mathbb{L}/(1 - x^m)\mathbb{L}$$

$$\iff \mathbb{L}G + \mathbb{L}G^{\perp} = \mathbb{L}.$$

Proof of (3): Obvious.

Proof of (4): For " \Rightarrow ", put $P = \begin{pmatrix} X & Y \\ A & -B \end{pmatrix}$, where B is the matrix in $M_{\ell}(R)$ such that $B G^{\perp} = (1 - x^m)I$, see [6, Section 5]. Then we have

$$P\begin{pmatrix} G \\ G^{\perp} \end{pmatrix} = \begin{pmatrix} I \\ O \end{pmatrix}.$$

Let us prove that P belongs to $GL_{2\ell}(R)$. Note that $\dim_{\mathbb{F}_q}(C_G) = m\ell - \deg |G|$ for any code C_G in $\mathbb{F}_q^{m\ell}$. Since $m\ell = \dim_{\mathbb{F}_q}(C_G) + \dim_{\mathbb{F}_q}(C_G^{\perp})$, one has $m\ell - \deg |G| - \deg |G^{\perp}| = 0$, or equivalently $\deg \left(|(1-x^m)I||G|^{-1}|G^{\perp}|^{-1} \right) = 0$, and so $|A| = c|G^{\perp}|$ for some $c \in \mathbb{F}_q \setminus \{0\}$. On the other hand, we have

$$P\begin{pmatrix} G & O \\ O & G^\perp \end{pmatrix}\begin{pmatrix} I & I \\ O & I \end{pmatrix}\begin{pmatrix} I & O \\ -XG & I \end{pmatrix} = \begin{pmatrix} O & I \\ AG & O \end{pmatrix}.$$

Therefore $|P||G||G^{\perp}| = -|A||G|$, that is, |P| = -c, this means $P \in GL_{2\ell}(R)$. The converse is obvious.

When $\ell=1$ we have $G=g,\ G^{\perp}=a^*$ and $\gcd(a^*,g)=1\iff\gcd(\widetilde{a},g)=1$, thus our theorem agrees with Theorem 1.1.

Remark 2.2. Let $\mathcal{J}=\{j\in\mathbb{Z}\mid 1\leq j\leq 2\ell\}$ and \mathcal{I} a subset of ℓ elements of \mathcal{J} , especially, $\mathcal{I}_0=\{j\in\mathbb{Z}\mid 1\leq j\leq \ell\}$. Let $|M_{\mathcal{I},\mathcal{I}_0}|$ denote the $(\ell\times\ell)$ -minor of $M\in M_{2\ell,\ell}(R)$ determined by $(\mathcal{I},\mathcal{I}_0)$, that is, the determinant of the $(\ell\times\ell)$ -submatrix of M obtained by taking rows in \mathcal{I} in regular order.

Since $GL_{2\ell}(R)$ is generated by row transformations over R and such transformations leave

$$\gcd\{|M_{\mathcal{I},\mathcal{I}_0}| \mid \text{ for all } \mathcal{I} \subset \mathcal{J}\}$$

invariant, we have by Theorem 2.1 the following equivalent:

$$C_G \text{ is } LCD \iff \begin{pmatrix} G \\ G^{\perp} \end{pmatrix} \text{ can be transformed by row transformations over } R \text{ to } \begin{pmatrix} I \\ O \end{pmatrix}$$

$$\iff \gcd \left\{ \left| \begin{pmatrix} G \\ G^{\perp} \end{pmatrix}_{\mathcal{I}, \mathcal{I}_0} \right| \mid \text{for all } \mathcal{I} \subset \mathcal{J} \right\} = 1.$$

Therefore if $gcd(|A|^*, |G|) = 1$ then C_G is LCD. But the converse is generally not true except for $\ell = 1$.

Example 2.3. Let $q = 2, \ell = 2, m = 4,$

$$G = \begin{pmatrix} 1 + x^2 & x \\ 0 & 1 + x^2 \end{pmatrix}$$
 and $G^{\perp} = \begin{pmatrix} 1 + x^2 & 0 \\ x^5 & 1 + x^2 \end{pmatrix}$.

Then

$$\begin{pmatrix} G \\ G^{\perp} \end{pmatrix} = \begin{pmatrix} 1 + x^2 & x \\ 0 & 1 + x^2 \\ 1 + x^2 & 0 \\ x^5 & 1 + x^2 \end{pmatrix}.$$

Putting

$$P = \begin{pmatrix} x^2 + x^4 & x + x^3 & 1 & x \\ x & 1 & x & 0 \\ 1 + x^2 & x & 1 + x^2 & 0 \\ 0 & 1 + x^2 & x^5 & 1 + x^2 \end{pmatrix},$$

we have $P \in GL_4(R)$ and $P\begin{pmatrix} G \\ G^{\perp} \end{pmatrix} = \begin{pmatrix} I \\ O \end{pmatrix}$, and by Theorem 2.1, C_G is LCD.

Of course, it can be verified by the equivalent of Remark 2.2. For simplicity, denoting $\left| \begin{pmatrix} G \\ G^{\perp} \end{pmatrix}_{\{i,j\},\mathcal{I}_0} \right|$ by $\{i,j\}$, we have

$$\begin{aligned}
\{1,2\} &= |G| = (1+x)^4, \ \{1,3\} = \begin{vmatrix} 1+x^2 & x \\ 1+x^2 & 0 \end{vmatrix} = x(1+x)^2, \\
\{1,4\} &= \begin{vmatrix} 1+x^2 & x \\ x^5 & 1+x^2 \end{vmatrix} = 1+x^4+x^6, \ \{2,3\} = \begin{vmatrix} 0 & 1+x^2 \\ 1+x^2 & 0 \end{vmatrix} = (1+x)^4, \\
\{2,4\} &= \begin{vmatrix} 0 & 1+x^2 \\ x^5 & 1+x^2 \end{vmatrix} = x^5(1+x)^2, \ \{3,4\} = |G^{\perp}| = (1+x)^4.
\end{aligned}$$

Since $gcd(\{1,2\},...,\{3,4\}) = 1$, C_G is LCD.

In [11], Yang and Massey gave the following theorem equivalent with Theorem 1.1:

Theorem 1.1' ([11, Theorem]). Let $g \in R$ be the reduced generator polynomial of a cyclic code of length m. Then

$$C_q$$
 is LCD if and only if $g = cg^*$ for $c \in \mathbb{F}_q \setminus \{0\}$ and $\gcd(a, g) = 1$.

For quasi-cyclic codes, the straightforward generalization of this theorem is not true. Indeed, for G of Example 2.3 we have A = G, and so $XA + YG \neq I$ for all $X, Y \in M_{\ell}(R)$.

Remark 2.4. Because the gcd of two polynomials in $\mathbb{F}_q[x]$ of degree $\leq m$ can be computed in $O(m \log^2 m)$ [8, Corollary 2], the confirmation of LCD property by checking $P\begin{pmatrix} G \\ G^{\perp} \end{pmatrix} = \begin{pmatrix} I \\ O \end{pmatrix}$ for some $P \in GL_{2\ell}(R)$ through elementary row operations over R can be done with $O(\ell^2 m \log^2 m) = O(\ell n \log^2 m)$. This indicates that our method has less computational complexity than the conventional method shown by [5.

dicates that our method has less computational complexity than the conventional method shown by [5, Proposition 1], since the complexity of computing $\mathcal{G}({}^{t}\mathcal{G})$ is $O(nk^2) = O(n^3)$, where $\mathcal{G} \in M_{k,n}(\mathbb{F}_q)$ is a generator matrix. Further, since our method treats $G \in M_{\ell}(R)$ instead of $\mathcal{G} \in M_{k,n}(\mathbb{F}_q)$, the data size is reduced by ℓ/k times for $\ell/k < 1$ in many important cases.

Corollary 2.5. Let G be as in Theorem 2.1. Suppose that there exists $P \in GL_{2\ell}(R)$ such that $P \begin{pmatrix} {}^{\mathrm{r}}G \\ G^{\perp} \end{pmatrix} = \begin{pmatrix} I \\ O \end{pmatrix}$. Then, C_G is LCD if and only if C_G is reversible.

Proof. By the same argument as in the proof of Theorem 2.1, we have

there exists
$$P \in GL_{2\ell}(R)$$
 such that $P \begin{pmatrix} {}^{\mathrm{r}}G \\ G^{\perp} \end{pmatrix} = \begin{pmatrix} I \\ O \end{pmatrix} \iff \mathbb{L}^{\mathrm{r}}G + \mathbb{L}G^{\perp} = \mathbb{L}$

$$\iff {}^{\mathrm{r}}C_G + C_G^{\perp} = \mathbb{F}_q^{n\ell}$$

$$\iff {}^{\mathrm{r}}C_G \cap C_G^{\perp} = \{0\}.$$

Combining with the proof of Theorem 2.1, we have the desired assertion.

Remark 2.6. When $\ell=1$, C_G is a cyclic code of length m, A=a and G=g with $ag=1-x^m$. If $\gcd(m,q)=1$ then $1-x^m$ decomposes into different irreducible polynomials in $\mathbb{F}_q[x]$, and so $\gcd(a,g)=\gcd(a^*,g^*)=1$. Then there exists $P\in GL_2(R)$ such that $P\begin{pmatrix}g^*\\a^*\end{pmatrix}=\begin{pmatrix}1\\0\end{pmatrix}$ by the same argument as in the proof for " \Rightarrow " of (4). Since $^{\mathrm{r}}G=g^*$ and $G^\perp=a^*$, Corollary 2.5 induces Corollary 1.2.

In the following table, we will give various examples of binary LCD quasi-cyclic codes with $\ell=2$ which are obtained by applying our theorem and attain the bounds in [1, Tables 1,2]. In the table, n, k and d mean length, dimension and minimum weight, respectively, and we write e.g. [0,2,3,8] to mean $1+x^2+x^3+x^8\in \mathbb{F}_2[x]$.

References

- S. Bouyuklieva, Optimal binary LCD codes, Designs, Codes and Cryptography, 89(11) (2021) 2441– 2461.
- [2] M. Esmaeili, S. Yari, On complementary-dual quasi-cyclic codes, Finite Fields and Their Applications, 15(3) (2009) 375–386.
- [3] C. Guan, R. Li, Z. Ma, On Euclidean, Hermitian and symplectic quasi-cyclic complementary dual codes, Preprint: arXiv:2301.00945 (2023).
- [4] C. Güneri, B. Özkaya, P. Solé, Quasi-cyclic complementary dual codes, Finite Fields and Their Applications, 42 (2016) 67–80.
- [5] J. L. Massey, Linear codes with complementary duals, Discrete Mathematics, 106/107 (1992) 337–342.
- [6] H. Matsui, On generator and parity-check polynomial matrices of generalized quasi-cyclic codes, Finite Fields and Their Applications, 34 (2015) 280–304 .
- [7] H. Matsui, A modulus factorization algorithm for self-orthogonal and self-dual quasi-cyclic codes via polynomial matrices, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 104(11) (2021) 1649–1653.
- [8] R. T. Moenck, Fast computation of GCDs, Proceedings of the Fifth Annual ACM Symposium on Theory of Computing (1973).
- [9] N. Ojiro, K. Kaneko, H. Matsui, An efficient algorithm for constructing reversible quasi-cyclic codes via Chinese remainder theorem, Finite Fields and Their Applications, 89 (2023) 102204.
- [10] R. Taki Eldin, H. Matsui, Linking reversed and dual codes of quasi-cyclic codes, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 105(3) (2022) 381–388.
- [11] X. Yang, J. L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Mathematics, 12 (1994) 391–393.
- [12] M. Zeraatpisheh, M. Esmaeili, T. A. Gulliver, Quasi-cyclic codes: algebraic properties and applications, Computational and Applied Mathematics 39(96) (2020).

Table 1. Binary LCD quasi-cyclic codes with good and optimal parameters

n	k	d	$G = \begin{pmatrix} g_{1,1} & g_{1,2} \\ 0 & g_{2,2} \end{pmatrix}$
20	8	6	$g_{1,1} = [0, 2], g_{1,2} = [0, 3, 4, 5, 6, 7, 8, 9], g_{2,2} = [0, 10].$
22	11	6	$g_{1,1} = [0,1], g_{1,2} = [0,2,3,8], g_{2,2} = [0,1,2,3,4,5,6,7,8,9,10].$
24	8	8	$g_{1,1} = [0, 1, 2, 4, 5, 6], g_{1,2} = [0, 4], g_{2,2} = [0, 1, 3, 4, 6, 7, 9, 10].$
24	12	6	$g_{1,1} = [0, 1, 2, 3], g_{1,2} = [0, 4, 5], g_{2,2} = [0, 1, 4, 5, 8, 9].$
26	12	8	$g_{1,1} = [0,1], g_{1,2} = [0,1,3,7,9,10,11,12], g_{2,2} = [0,13].$
26	13	7	$g_{1,1} = [0,1], g_{1,2} = [0,2,3,4,5,6,7,9],$
			$g_{2,2} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].$
26	14	6	$g_{1,1} = [0], g_{1,2} = [0, 3, 4, 5, 6, 9, 11],$
			$g_{2,2} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].$
28	14	7	$g_{1,1} = [0, 2, 3], g_{1,2} = [0, 2, 4, 9], g_{2,2} = [0, 2, 3, 4, 7, 9, 10, 11].$
30	11	9	$g_{1,1} = [0, 2, 3, 4, 6], g_{1,2} = [0, 3, 5, 8], g_{2,2} = [0, 1, 3, 4, 6, 7, 9, 10, 12, 13].$
30	12	8	$g_{1,1} = [0, 4, 6, 7], g_{1,2} = [0, 2, 5, 7, 9, 10], g_{2,2} = [0, 3, 4, 6, 8, 9, 10, 11].$
30	15	7	$g_{1,1} = [0, 1, 3, 5], g_{1,2} = [0, 3, 6, 9], g_{2,2} = [0, 1, 2, 4, 5, 8, 10].$
32	16	8	$g_{1,1} = [0, 1, 2, 3], g_{1,2} = [0, 1, 7, 8, 12], g_{2,2} = [0, 1, 4, 5, 8, 9, 12, 13].$
34	9	13	$g_{1,1} = [0, 1, 3, 6, 8, 9], g_{1,2} = [0, 2, 7, 8, 9, 10, 11, 12],$
			$g_{2,2} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].$
34	17	8	$g_{1,1} = [0,1], g_{1,2} = [0,1,2,3,4,5,6,7,10,13,14,15],$
			$g_{2,2} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].$
34	18	7	$g_{1,1} = [0], g_{1,2} = [0, 1, 4, 5, 6, 7, 8, 9, 11, 13, 14],$
			$g_{2,2} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].$
36	14	10	$g_{1,1} = [0, 1, 2, 3, 4, 5], g_{1,2} = [0, 1, 2, 6, 7, 8, 9, 10, 11, 13, 16],$
			$g_{2,2} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].$
36	16	9	$g_{1,1} = [0, 2, 4], g_{1,2} = [0, 1, 2, 3, 6, 7, 9, 14],$
			$g_{2,2} = [0, 2, 4, 6, 8, 10, 12, 14, 16].$
36	18	8	$g_{1,1} = [0, 1, 2], g_{1,2} = [0, 2, 6, 7, 8, 11, 14, 15],$
			$g_{2,2} = [0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16].$
36		6	$g_{1,1} = [0,1,2], g_{1,2} = [0,1,4,5,6], g_{2,2} = [0,1,2,6,7,8,12,13,14].$
	22	6	$g_{1,1} = [0], g_{1,2} = [0, 1, 2, 3, 4, 5, 6, 9, 10, 11], g_{2,2} = [0, 2, 6, 8, 12, 14].$
38	18	8	$g_{1,1} = [0,1], g_{1,2} = [0,1,4,5,11,12,14,15], g_{2,2} = [0,19].$
38	19	8	$g_{1,1} = [0,1], g_{1,2} = [0,3,7,8,10,14,15],$ $g_{2,2} = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18].$
38	20	7	$g_{1,1} = [0], g_{1,2} = [0, 5, 7, 11, 12, 15],$
			$g_{2,2} = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].$
40	16	10	$g_{1,1} = [0,4], g_{1,2} = [0,1,3,8,9,11,12,16], g_{2,2} = [0,20].$
40	20	9	$g_{1,1} = [0, 1, 2, 3], g_{1,2} = [0, 4, 5, 7, 10, 13, 15],$
			$g_{2,2} = [0, 1, 4, 5, 8, 9, 12, 13, 16, 17].$
40	24	5	$g_{1,1} = [0], g_{1,2} = [0, 1, 3, 4, 5, 7, 12], g_{2,2} = [0, 4, 8, 12, 16].$