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Abstract: A group G is CII or, equivalently, 2-Engel if [g, h] = [g−1, h−1] for all elements g and h in G, and is
CCII if the central quotient G/Z(G) is CII. In this paper, we give sufficient conditions and necessary
conditions for a group to be CCII. In particular, we show that every CCII group is nilpotent of class
at most 4 and list all CII groups and all CCII groups of order n with n < 64 up to isomorphism.
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1. Introduction

The notion of nilpotent groups is of great importance in the classification of groups, especially
the classification of Lie groups. Furthermore, nilpotent groups and n-Engel groups are closely related
in various ways. In fact, several well-known groups such as finite p-groups and the Heisenberg group
turn out to be nilpotent. In [12, 15], the authors introduce two families of groups, which have strong
connections with 2-Engel groups and nilpotent groups, in order to increase explicit examples of a non-
associative structure called a gyrogroup. They also list all finite groups in these families of order less
than 32 using the classification of groups of order less than 32 in Appendix B of [8]. In the present paper,
we continue this work. In fact, the goal of this paper is twofold: to investigate the family of CII groups
and the family of CCII groups (see Section 3 for the relevant definitions) and to list all CII groups and
all CCII groups of order less than 64 up to isomorphism. It turns out that CII groups and CCII groups
are all nilpotent, and some of which give rise to non-degenerate gyrogroups (see Section 6). This fact
emphasizes the importance of nilpotent groups in the theory of gyrogroups.
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2. Preliminaries

We follow standard terminology and notation in group theory. The basic theory of nilpotent groups
can be found in, for instance, [5]. Here, we mention notations and useful results used in the sequel. Let
G be a group. The center of G is denoted by Z(G). For each pair of elements g, h ∈ G, the commutator
of (g, h) is denoted by [g, h] and is defined as [g, h] = g−1h−1gh. In the case when G is nilpotent, the
nilpotency class of G is denoted by n(G). We state the following well-known fact for easy reference.

Proposition 2.1. Let p be a prime, and let k be an integer such that k ≥ 2. If G is a group of order pk,
then G is nilpotent and n(G) ≤ k − 1.

3. Properties of CII groups and CCII groups

Recall that a group G is said to be commutator-inversion invariant (abbreviated to CII) or, equiv-
alently, 2-Engel if [g, h] = [g−1, h−1] for all g, h ∈ G (see Theorem 3.1 of [12]). Also, recall that a group
G is said to be CCII if its central quotient G/Z(G) is CII (see Definition 1 of [15]). In this section, we
collect basic properties of CII groups and CCII groups; some of which are deduced from Levi’s results
straightforwardly. Therefore, not all results are claimed to be new. For the sake of consistence, we use
the term “CII” instead of “2-Engel”. We first show that the family of CII groups is included in the family
of CCII groups.

Proposition 3.1. Let G be a group. If G is CII, then G is CCII.

Proof. Suppose that G is CII. By Proposition 3.1 of [12], G/Z(G) is CII. By definition, G is CCII.

The converse of Proposition 3.1 is not, in general, true. In fact, the dihedral group D16 is not CII,
but its central quotient is CII (see page 6 of [12]). Hence, D16 is CCII. This in particular shows that
the family of CII groups is properly included in the family of CCII groups. Moreover, we will see later
that the dihedral group D2n is not CCII for all odd integers n ≥ 3. Next, we exhibit several sufficient
conditions and necessary conditions for a group to be CII or CCII. Using Levi’s result, we obtain the
following theorem immediately.

Theorem 3.2. Every group of exponent 3 is CII.

Proof. By Levi’s result [9], every group of exponent 3 is 2-Engel. Hence, the theorem follows immedi-
ately from the fact that a group is CII if and only if it is 2-Engel.

In light of Theorem 3.2, the Burnside group B(m, 3) is CII for all integers m ≥ 3. Furthermore,
as mentioned in Corollary 3.1 of [12], every nilpotent group of class at most 2 is CII. We summarize
relationships between some classes of groups in Figure 1. The next theorem is a partial converse of
Corollary 3.1 of [12] in the case of finite groups.

Theorem 3.3. Every finite CII group without elements of order 3 is nilpotent of class at most 2.

Proof. According to Burnside’s result [3], every finite 2-Engel group without elements of order 3 is
nilpotent of class at most 2. Hence, the theorem follows immediately.

In light of Theorem 3.3, the property of being CII and the property of being nilpotent of class at
most 2 are equivalent in the case of finite groups without elements of order 3. Therefore, we obtain the
following corollary as an application of Cauchy’s Theorem.

Corollary 3.4. Suppose that G is a finite group whose order is not divisible by 3. Then G is CII if and
only if G is nilpotent of class at most 2.
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Figure 1. Relationships between nilpotent groups of class at most 2, CII groups, and CCII
groups.

It turns out that the family of CII groups is included in the family of nilpotent groups of class at
most 3, as stated in the following theorem.

Theorem 3.5. Every CII group is nilpotent of class at most 3.

Proof. According to Levi’s result [9], every 2-Engel group is nilpotent of class at most 3. Hence, the
theorem follows immediately.

We remark that there exists a nilpotent group of class 3 that is not CII. In fact, the dihedral group
D16 is nilpotent of class 3 but is not CII. This in particular shows that the family of CII groups is properly
included in the family of nilpotent groups of class at most 3. Also, since the center of a nilpotent group
cannot be trivial, it follows that a non-trivial group with trivial center cannot be CII as a consequence
of Theorem 3.5. Recall that a group is said to be centerless if its center is trivial.

Proposition 3.6. If G is a non-trivial centerless group, then G is neither CII nor CCII.

Proof. Suppose that G is non-trivial and centerless. Then G is not nilpotent by Lemma 2.2 of [5].
Hence, G is not CII by Theorem 3.5. This also implies that G is not CCII because G/Z(G) ∼= G.

As an application of Proposition 3.6, the following groups are neither CII nor CCII:

• the symmetric group Sn for all n ≥ 3;

• the dihedral group D2n for all odd integers n ≥ 3;

• the non-abelian simple groups;

• the Frobenius groups

because they are centerless. Using the fact that a non-trivial group G is nilpotent of class n if and only
if G/Z(G) is nilpotent of class n− 1 (see Lemma 2.12 of [5]), we directly obtain the following theorem.

Theorem 3.7. Every nilpotent group of class at most 3 is CCII.

Proof. Suppose that G is nilpotent of class n with n ≤ 3. In the case when n = 0, G is trivial and
hence is CCII. Now, assume that n ≥ 1. By Lemma 2.12 of [5], G/Z(G) is nilpotent of class at most
n− 1. Thus, G/Z(G) is nilpotent of class at most 2 and hence is CII. This shows that G is CCII.

In light of Theorem 3.5 as well as Lemma 2.12 of [5], we immediately obtain the following theorem.
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Theorem 3.8. Every CCII group is nilpotent of class at most 4.

Proof. Suppose that G is CCII. By definition, G/Z(G) is CII. By Theorem 3.5, G/Z(G) is nilpotent
of class at most 3. Hence, by Lemma 2.12 of [5], G is nilpotent of class at most 4.

We remark that there exists a nilpotent group of class 4 that is not CCII. In fact, the dihedral group
D32 is nilpotent of class 4. However, D32 is not CCII because D32/Z(D32) ∼= D16 and D16 is not CII.
This in particular shows that the family of CCII groups is properly included in the family of nilpotent
groups of class at most 4. Moreover, Theorem 3.8 leads to a natural question whether a CCII group
that is nilpotent of class 4 exists. This question has the affirmative answer. Recall that a group H is
said to be capable if there exists a group G such that H ∼= G/Z(G). As in [2], a group is capable if and
only if its epicenter is trivial. It can be checked by using GAP that there exists a capable CII group of
nilpotency class 3 (see the appendix), and so a CCII group of nilpotency class 4 exists. We summarize
some relationships between CII groups, CCII groups, and nilpotent groups in Figure 2. We close this
section with a diagram to check whether a group is CII or CCII in Figure 3.

Figure 2. Relationships between CII groups, CCII groups, and nilpotent groups. Here, Γ is a
group such that Γ/Z(Γ) is a CII group of class 3.

Figure 3. Diagram of verifying whether a group is CII or CCII.

4. Finite CII groups and finite CCII groups

In this section, we focus on finite CII groups and finite CCII groups. According to Theorems 3.5 and
3.8, every CII group and every CCII group are nilpotent. Therefore, we obtain the following sufficient
and necessary conditions for a finite group to be CII and to be CCII, respectively, using the well-known
property of finite nilpotent groups.
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Theorem 4.1. Let G be a finite group. Then G is CII if and only if G is isomorphic to a finite direct
product of CII finite p-groups of nilpotency class at most 3.

Proof. Suppose that G is CII. By Theorem 3.5, G is nilpotent of class at most 3. Hence, G ∼=
P1 × P2 × · · · × Pk, where Pi is a unique Sylow pi-subgroup of G corresponding to each prime divisor pi
of |G|. Hence, Pi is CII for all i by part 1 of Proposition 3.4 of [12]. Furthermore, Pi is nilpotent of class
at most 3 for all i. The converse holds immediately by part 1 of Proposition 3.4 of [12].

Theorem 4.2. Let G be a finite group. Then G is CCII if and only if G is isomorphic to a finite direct
product of CCII finite p-groups of nilpotency class at most 4.

Proof. The proof can be done in a similar fashion to the proof of Theorem 4.1, using Theorem 3.8 and
part 2 of Proposition 3.4 of [12].

Theorem 4.1 states that, in order to study finite CII groups, one may examine finite p-groups of
nilpotency class at most 3. Similarly, Theorem 4.2 states that, in order to study finite CCII groups,
one may examine finite p-groups of nilpotency class at most 4. The next lemma shows that a finite
group whose order is cubic-prime-free is nilpotent if and only if it is abelian. This implies that a finite
non-abelian group whose order is cubic-prime-free is neither CII nor CCII, as shown in Proposition 4.4.

Lemma 4.3. Suppose that n is a positive integer written in the canonical form as n = pt11 pt22 · · · ptkk ,
where p1 < p2 < · · · < pk are primes and ti is an integer with 1 ≤ ti ≤ 2 for i = 1, 2, . . . , k. If G is a
group of order n, then G is nilpotent if and only if G is abelian.

Proof. Suppose that |G| = n. It is clear that if G is abelian, then G is nilpotent. Assume that G is
nilpotent. Then G ∼= P1 × P2 × · · · × Pk, where Pi is a unique Sylow pi-subgroup of G for i = 1, 2, . . . , k.
Since |Pi| ∈ {pi, p2i }, it follows that Pi is abelian for all i, and so G is abelian.

Proposition 4.4. Suppose that n is a positive integer written in the canonical form as n = pt11 pt22 · · · ptkk ,
where p1 < p2 < · · · < pk are primes and ti is an integer with 1 ≤ ti ≤ 2 for i = 1, 2, . . . , k. Then every
non-abelian group of order n is neither nilpotent, CII, nor CCII.

Proof. Suppose that G is non-abelian of order n. By Lemma 4.3, G is not nilpotent, and so G is
neither CII nor CCII.

The following lemma shows that if a finite group whose order is quartic-prime-free is nilpotent,
then its nilpotency class cannot exceed 2. This implies that a finite nilpotent group whose order is
quartic-prime-free is both CII and CCII, as shown in Proposition 4.6.

Lemma 4.5. Suppose that n is a positive integer written in the canonical form as n = pt11 pt22 · · · ptkk ,
where p1 < p2 < · · · < pk are primes and ti is an integer with 1 ≤ ti ≤ 3 for i = 1, 2, . . . , k. If G is a
group of order n, then G is nilpotent implies the nilpotency class of G is at most 2.

Proof. Suppose that |G| = n. Assume that G is nilpotent. Then G ∼= P1 × P2 × · · · × Pk, where Pi is
a unique Sylow pi-subgroup of G for i = 1, 2, . . . , k. Since |Pi| ∈ {pi, p2i , p3i }, it follows that n(Pi) ≤ 2.
This implies that n(G) ≤ 2.

Proposition 4.6. Suppose that n is a positive integer written in the canonical form as n = pt11 pt22 · · · ptkk ,
where p1 < p2 < · · · < pk are primes and ti is an integer with 1 ≤ ti ≤ 3 for i = 1, 2, . . . , k. Then every
nilpotent group of order n is CII and CCII.

Proof. Suppose that G is nilpotent of order n. By Lemma 4.5, n(G) ≤ 2, and so G is CII and CCII.

Since every group of order p3, where p is a prime, is nilpotent, Proposition 4.6 yields the following
consequence:
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Corollary 4.7. Let p be a prime. Then every group of order p3 is CII and CCII.

Next, we show that every group of order p4, where p is a prime, is always CCII (but not necessarily
CII).

Proposition 4.8. Let p be a prime. Then every group of order p4 is CCII.

Proof. Suppose that |G| = p4. It is known that G must be nilpotent of class at most 3 (see Proposition
2.1). Hence, Theorem 3.7 applies.

Let p be a prime. We remark that there exists a group of order p4 that is not CII (for example, D16),
and there exists a CII group of order p4 (for example, Z2 ×D8). Also, a classification of groups of order
p4, where p > 2, can be found in [4]. As mentioned in [1], if p > 2, then there are only four non-abelian
groups of nilpotency class 3 (up to isomorphism):

1. Gp4,7 = ⟨a, b | ap = bp = [a, b]p = [a, [a, b]]p = [b, [a, b]] = e, [a, [a, [a, b]]] = [b, [a, [a, b]]] = e⟩;

2. Gp4,8 = ⟨a, b | ap2

= bp = [a, b]p = [b, [a, b]] = e, [a, [a, b]] = ap⟩;

3. Gp4,9 = ⟨a, b | ap2

= bp = [a, b]p = [a, [a, b]] = e, [b, [a, b]] = ap⟩;

4. Gp4,10 = ⟨a, b | ap2

= bp = [a, b]p = [a, [a, b]] = e, [b, [a, b]] = a2p⟩.

Note that Gp4,9 and Gp4,10 are not CII because [b, [a, b]] ̸= e (that is, they are not 2-Engel). Moreover,
Gp4,8 is not CII since otherwise [a, [b, a]] = e would imply e = a−1[b, a]−1a[b, a], which would imply
[a, b]a = a[a, b], and so [a, [a, b]] = e, contrary to the fact that [a, [a, b]] = ap. Similarly, Gp4,7 is not CII
since otherwise [a, [b, a]] = e would imply [a, [a, b]] = e, contrary to the fact that [a, [a, b]] has order p. We
remark that the remaining six non-abelian groups (up to isomorphism) are of nilpotency class 2 so that
they are CII. Moreover, the only nilpotent groups of order 16 of class 3 are D16, Q16, and SD16. Let us
summarize this fact as Proposition 4.9.

Proposition 4.9. Let G be a group of order p4, where p is a prime. Then G is CII if and only if the
nilpotency class of G is at most 2.

For a group of order p5, where p is a prime, we need to know its center in order to determine whether
it is CCII in some circumstances.

Proposition 4.10. Suppose that G is a group of order p5, where p is a prime. If Z(G) is not of order
p, then G is CCII. If Z(G) is of order p and the nilpotency class of G is at most 3, then G is CCII.

Proof. By Lagrange’s Theorem, |Z(G)| ∈ {1, p, p2, p3, p4, p5}. Since G is a finite p-group, |Z(G)| ≠ 1.
In the case when |Z(G)| ∈ {p3, p4, p5}, |G/Z(G)| ∈ {1, p, p2}, and so G/Z(G) is abelian. In the case when
|Z(G)| = p2, G/Z(G) has order p3, which implies that G/Z(G) is CII by Corollary 4.7. This shows that
G is CCII. Now, suppose that |Z(G)| = p and n(G) ≤ 3. Then G/Z(G) has order p4 and n(G/Z(G)) ≤ 2.
It follows that G/Z(G) is CII, and so G is CCII.

Using a classification of groups of order 32 (see, for instance, [7]), we can refine the result in Propo-
sition 4.10 and complete this section with the following proposition.

Proposition 4.11. Suppose that G is a group of order 32. If Z(G) is not of order 2, then G is CCII. If
Z(G) is of order 2, then G is CCII if and only if the nilpotency class of G is at most 3.

Proof. In light of Proposition 4.10, we need only show that if |Z(G)| = 2 and G is CCII, then n(G) ≤ 3.
Suppose that |Z(G)| = 2 and G is CCII. Hence, G/Z(G) has order 16 and is CII. This implies that
n(G/Z(G)) ≤ 2 since there are only three groups of order 16 that are not CII up to isomorphism (which
are D16, Q16, and SD16) and all of which have nilpotency class 3. It follows that n(G) ≤ 3, and the proof
completes.
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5. Tables of CII groups and CCII groups of small order

In [12, 15], the authors collect finite CCII groups of order less than 32 with the aid of classification
of finite non-abelian groups, up to isomorphism, as in Appendix B of [8]. In this section, we refine this
result by determining whether they are CII and continue to list CII groups and CCII groups of order
less than 64. We follow the list of non-abelian groups of order n with 32 ≤ n ≤ 63 exhibited in [6].
In Tables 1–7, which are built by applying the results in Section 4, Zn denotes the group of integers
modulo n; Λn[m] denotes an abelian group of order n without specifying its isomorphism type, and m is
the number of isomorphism types of Λn; Sn denotes the symmetric group of degree n; D2n denotes the
dihedral group of order 2n; Q4n denotes the generalized quaternion group (also called the dicyclic group)
of order 4n; An denotes the alternating group of degree n; SD2n denotes the semidihedral group (also
called the quasidihedral group) of order 2n; Mn denotes the modular maximal-cyclic group of order n;
Γn,m denotes the mth small group of order n in the Small Groups Library of GAP; Dih(A) denotes the
generalized dihedral group of an abelian group A; Fn denotes the Frobenius group of order n; SL(m,n)
denotes the special linear group of m×m matrices with entries from a field of n elements; B(m,n) denotes
the Burnside group induced by a free group Fm of rank m and the (normal) subgroup generated by all
nth powers of elements of Fm; Hol(G) denotes the holomorph of a group G; and GL(m,n) denotes the
general linear group of m×m matrices with entries from a field of n elements.

6. Gyrogroups associated with CCII groups

A gyrogroup is a group-like structure whose binary operation is, in general, non-associative. This
type of algebraic structure arises from the study of parametrization of the Lorentz transformation group
in [13]. For more details of formation of gyrogroup theory, we refer the reader to [14] and the references
therein. For basic knowledge of gyrogroups, we refer the reader to [10, 14].

Here, we discuss close relationships between CCII groups and gyrogroups. The importance of CCII
groups lies in the fact that any CCII group induces a gyrogroup, which enables us to have more examples
of concrete gyrogroups, as shown in Theorem 4.2 of [12]. In fact, if G is a CCII group, then the underlying
set of G can be made into a gyrogroup, denoted by Ggyr, under the binary operation defined by the formula

a⊕ b = aaba−1 for all a, b ∈ G. (1)

In the resulting gyrogroup Ggyr, the identity of Ggyr is the same as the identity of G, and the inverse of an
element a in Ggyr is the same as the inverse of a in G. Furthermore, if a and b are elements in G, then the
gyroautomorphism of Ggyr generated by a and b is the inner automorphism generated by the commutator
[a−1, b]. It is proved in Theorem 4.3 of [12] that Ggyr is associative if and only if G is nilpotent of class
at most 2, which gives a characterization for Ggyr to be a group under the induced gyrogroup operation.
According to Proposition 4.2 of [12], if G and H are isomorphic CCII groups, then Ggyr and Hgyr are
isomorphic as gyrogroups. The converse is not, in general, true. However, if the orders of G and H are
not divisible by 3, then the converse holds. In light of the results in Section 5, we conclude that Dgyr

16 ,
Qgyr

16 , and SDgyr
16 are pairwise non-isomorphic non-degenerate gyrogroups of order 16; Γgyr

32,6, Γ
gyr
32,7, Γ

gyr
32,8,

Γgyr
32,9, Γ

gyr
32,10, Γ

gyr
32,11, Γ

gyr
32,13, Γ

gyr
32,14, Γ

gyr
32,15, Γ

gyr
32,42, Γ

gyr
32,44, Hol(Z8)

gyr, (Z2 ×D16)
gyr, (Z2 × SD16)

gyr, and
(Z2 ×Q16)

gyr are pairwise non-isomorphic non-degenerate gyrogroups of order 32; and (Z3 ×D16)
gyr,

(Z3 × SD16)
gyr, and (Z3 ×Q16)

gyr are pairwise non-isomorphic non-degenerate gyrogroups of order 48
(as a consequence of Proposition 1 of [15] and Theorem 3.3 of [11]). In the case when p is a prime such
that p > 3, we have an infinite series of pairwise non-isomorphic non-degenerate gyrogroups of order p4:
Ggyr

p4,7, G
gyr
p4,8, G

gyr
p4,9, and Ggyr

p4,10.
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Appendix

In the appendix, we exhibit an example of a command in GAP for verifying that there exists a
capable CII group of class 3.

gap> LoadPackage( "nq" );
true
gap> F := FreeGroup( "a","b","c","x" );
<free group on the generators [ a, b, c, x ]>
gap> AssignGeneratorVariables( F );
#I Assigned the global variables [ a, b, c, x ]
gap> G := NilpotentQuotient( F/[x∧3]: idgens := [x] );
Pcp-group with orders [ 3, 3, 3, 3, 3, 3, 3 ]
gap> IsNilpotent ( G );
true
gap> NilpotencyClassOfGroup( G );
3
gap> IsCII := function( G ) return ForAll( ConjugacyClasses( G ),
c -> IsAbelian ( NormalClosure ( G, Subgroup ( G,
> [Representative( c )] ) ) ) ); end;
function( G ) ... end
gap> IsCII ( G );
true
gap> Epicenter ( G );
Pcp-group with orders [ ]

Example
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Order Group CII group? CCII group? Is nilpotent of class at most 2?
1 {e} Yes Yes Yes
2 Z2 Yes Yes Yes
3 Z3 Yes Yes Yes
4 Λ4[2] Yes Yes Yes
5 Z5 Yes Yes Yes
6 Z6 Yes Yes Yes
6 S3 No No No
7 Z7 Yes Yes Yes
8 Λ8[3] Yes Yes Yes
8 D8 Yes Yes Yes
8 Q8 Yes Yes Yes
9 Λ9[2] Yes Yes Yes
10 Z10 Yes Yes Yes
10 D10 No No No
11 Z11 Yes Yes Yes
12 Λ12[2] Yes Yes Yes
12 A4 No No No
12 D12 No No No
12 Q12 No No No
13 Z13 Yes Yes Yes
14 Z14 Yes Yes Yes
14 D14 No No No
15 Z15 Yes Yes Yes
16 Λ16[5] Yes Yes Yes
16 D16 No Yes No
16 Q16 No Yes No
16 SD16 No Yes No
16 Z2 ×D8 Yes Yes Yes
16 Z2 ×Q8 Yes Yes Yes
16 M16 Yes Yes Yes
16 Γ16,3 Yes Yes Yes
16 Γ16,4 Yes Yes Yes
16 Γ16,13 Yes Yes Yes
17 Z17 Yes Yes Yes
18 Λ18[2] Yes Yes Yes
18 D18 No No No
18 S3 × Z3 No No No
18 Dih(Z3 × Z3) No No No
19 Z19 Yes Yes Yes
20 Λ20[2] Yes Yes Yes
20 D20 No No No
20 Q20 No No No
20 F20 No No No
21 Z21 Yes Yes Yes
21 F21 No No No
22 Z22 Yes Yes Yes
22 D22 No No No
23 Z23 Yes Yes Yes

Table 1. The groups of order n with 1 ≤ n ≤ 23.
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Order Group CII group? CCII group? Is nilpotent of class at most 2?
24 Λ24[3] Yes Yes Yes
24 Z4 ×D6 No No No
24 Z2 ×Q12 No No No
24 Z2 ×D12 No No No
24 Z2 ×A4 No No No
24 Z3 ×D8 Yes Yes Yes
24 D24 No No No
24 S4 No No No
24 Q24 No No No
24 SL(2, 3) No No No
24 Z3 ×Q8 Yes Yes Yes
24 Γ24,1 No No No
24 Γ24,8 No No No
25 Λ25[2] Yes Yes Yes
26 Z26 Yes Yes Yes
26 D26 No No No
27 Λ27[3] Yes Yes Yes
27 M27 Yes Yes Yes
27 B(2, 3) Yes Yes Yes
28 Λ28[2] Yes Yes Yes
28 D28 No No No
28 Q28 No No No
29 Z29 Yes Yes Yes
30 Z30 Yes Yes Yes
30 D30 No No No
30 Z3 ×D10 No No No
30 Z5 × S3 No No No
31 Z31 Yes Yes Yes

Table 2. The groups of order n with 24 ≤ n ≤ 31.
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Order Group CII group? CCII group? Is nilpotent of class at most 2?
32 Λ32[7] Yes Yes Yes
32 D32 No No No
32 Q32 No No No
32 Γ32,49 Yes Yes Yes
32 SD32 No No No
32 Γ32,50 Yes Yes Yes
32 M32 Yes Yes Yes
32 Γ32,11 No Yes No
32 Γ32,27 Yes Yes Yes
32 Γ32,38 Yes Yes Yes
32 Γ32,42 No Yes No
32 Γ32,6 No Yes No
32 Hol(Z8) No Yes No
32 Γ32,28 Yes Yes Yes
32 Dih(Z4 × Z4) Yes Yes Yes
32 Γ32,5 Yes Yes Yes
32 Γ32,29 Yes Yes Yes
32 Γ32,9 No Yes No
32 Γ32,24 Yes Yes Yes
32 Γ32,33 Yes Yes Yes
32 Γ32,12 Yes Yes Yes
32 Γ32,35 Yes Yes Yes
32 Γ32,4 Yes Yes Yes
32 Γ32,10 No Yes No
32 Γ32,7 No Yes No
32 Γ32,15 No Yes No
32 Γ32,31 Yes Yes Yes
32 Γ32,44 No Yes No
32 Γ32,8 No Yes No
32 Γ32,30 Yes Yes Yes
32 Γ32,14 No Yes No
32 Γ32,13 No Yes No
32 Γ32,2 Yes Yes Yes
32 Γ32,32 Yes Yes Yes
32 Z4 ×D8 Yes Yes Yes
32 Z2 ×D16 No Yes No
32 Z2 × SD16 No Yes No
32 Z2 × Z2 ×D8 Yes Yes Yes
32 Z2 ×M16 Yes Yes Yes
32 Z4 ×Q8 Yes Yes Yes
32 Z2 ×Q16 No Yes No
32 Z2 × Z2 ×Q8 Yes Yes Yes
32 Z2 × Γ16,13 Yes Yes Yes
32 Z2 × Γ16,3 Yes Yes Yes
32 Z2 × Γ16,4 Yes Yes Yes

Table 3. The groups of order 32.

270



T. Suksumran / J. Algebra Comb. Discrete Appl. 12(3) (2025) 259–274–267

Order Group CII group? CCII group? Is nilpotent of class at most 2?
33 Z33 Yes Yes Yes
34 Z34 Yes Yes Yes
34 D34 No No No
35 Z35 Yes Yes Yes
36 Λ36[4] Yes Yes Yes
36 D36 No No No
36 Q36 No No No
36 Γ36,9 No No No
36 Γ36,7 No No No
36 Γ36,3 No No No
36 S3 × S3 No No No
36 Z6 × S3 No No No
36 Z3 ×A4 No No No
36 Z3 ×Q12 No No No
36 Z2 ×Dih(Z3 × Z3) No No No
37 Z37 Yes Yes Yes
38 Z38 Yes Yes Yes
38 D38 No No No
39 Z39 Yes Yes Yes
39 Z13 ⋊ Z3 No No No
40 Λ40[3] Yes Yes Yes
40 D40 No No No
40 Q40 No No No
40 Γ40,8 No No No
40 Γ40,3 No No No
40 Γ40,1 No No No
40 Z2 × F20 No No No
40 Z4 ×D10 No No No
40 Z5 ×D8 Yes Yes Yes
40 Z2 × Z2 ×D10 No No No
40 Z5 ×Q8 Yes Yes Yes
40 Z2 ×Q20 No No No
41 Z41 Yes Yes Yes
42 Z42 Yes Yes Yes
42 D42 No No No
42 F42 No No No
42 Z7 × S3 No No No
42 Z3 ×D14 No No No
42 Z2 × F21 No No No
43 Z43 Yes Yes Yes
44 Λ44[2] Yes Yes Yes
44 D44 No No No
44 Q44 No No No
45 Λ45[2] Yes Yes Yes

Table 4. The groups of order n with 33 ≤ n ≤ 45.
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Order Group CII group? CCII group? Is nilpotent of class at most 2?
46 Z46 Yes Yes Yes
46 D46 No No No
47 Z47 Yes Yes Yes
48 Λ48[5] Yes Yes Yes
48 D48 No No No
48 Q48 No No No
48 GL(2, 3) No No No
48 Γ48,28 No No No
48 Γ48,37 No No No
48 Γ48,30 No No No
48 Γ48,3 No No No
48 Γ48,50 No No No
48 Γ48,14 No No No
48 Γ48,15 No No No
48 Γ48,5 No No No
48 Γ48,6 No No No
48 Γ48,39 No No No
48 Γ48,17 No No No
48 Γ48,41 No No No
48 Γ48,1 No No No
48 Γ48,13 No No No
48 Γ48,18 No No No
48 Γ48,12 No No No
48 Γ48,33 No No No
48 Γ48,16 No No No
48 Γ48,10 No No No
48 Γ48,19 No No No
48 Z2 × S4 No No No
48 Z4 ×A4 No No No
48 S3 ×D8 No No No
48 Z2 × Z2 ×A4 No No No
48 Z2 × SL(2, 3) No No No
48 Z8 × S3 No No No
48 Z3 ×D16 No Yes No
48 Z6 ×D8 Yes Yes Yes
48 S3 ×Q8 No No No
48 Z2 ×D24 No No No
48 Z2 × Z2 × Z2 × S3 No No No
48 Z3 × SD16 No Yes No
48 Z3 ×M16 Yes Yes Yes
48 Z6 ×Q8 Yes Yes Yes
48 Z3 ×Q16 No Yes No
48 Z4 ×Q12 No No No
48 Z2 ×Q24 No No No
48 Z2 × Z2 ×Q12 No No No
48 Z2 × Z4 × S3 No No No
48 Z2 × Γ24,8 No No No
48 Z3 × Γ16,13 Yes Yes Yes
48 Z3 × Γ16,3 Yes Yes Yes
48 Z2 × Γ24,1 No No No
48 Z3 × Γ16,4 Yes Yes Yes

Table 5. The groups of order n with 46 ≤ n ≤ 48.
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Order Group CII group? CCII group? Is nilpotent of class at most 2?
49 Λ49[2] Yes Yes Yes
50 Λ50[2] Yes Yes Yes
50 D50 No No No
50 Γ50,4 No No No
50 Z5 ×D10 No No No
51 Z51 Yes Yes Yes
52 Λ52[2] Yes Yes Yes
52 D52 No No No
52 Q52 No No No
52 Γ52,3 No No No
53 Z53 Yes Yes Yes
54 Λ54[3] Yes Yes Yes
54 D54 No No No
54 Hol(Z9) No No No
54 Γ54,5 No No No
54 Γ54,8 No No No
54 Γ54,7 No No No
54 Γ54,14 No No No
54 Z9 × S3 No No No
54 Z3 ×D18 No No No
54 Z2 ×B(2, 3) Yes Yes Yes
54 Z3 × Z3 × S3 No No No
54 Z2 ×M27 Yes Yes Yes
54 Z3 ×Dih(Z3 × Z3) No No No
55 Z55 Yes Yes Yes
55 Z11 ⋊ Z5 No No No
56 Λ56[3] Yes Yes Yes
56 D56 No No No
56 F56 No No No
56 Q56 No No No
56 Γ56,7 No No No
56 Γ56,1 No No No
56 Z4 ×D14 No No No
56 Z7 ×D8 Yes Yes Yes
56 Z2 × Z2 ×D14 No No No
56 Z7 ×Q8 Yes Yes Yes
56 Z2 ×Q28 No No No
57 Z57 Yes Yes Yes
57 Z19 ⋊ Z3 No No No
58 Z58 Yes Yes Yes
58 D58 No No No
59 Z59 Yes Yes Yes

Table 6. The groups of order n with 49 ≤ n ≤ 59.
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Order Group CII group? CCII group? Is nilpotent of class at most 2?
60 Λ60[2] Yes Yes Yes
60 A5 No No No
60 D60 No No No
60 Q60 No No No
60 Γ60,7 No No No
60 S3 ×D10 No No No
60 Z3 × F20 No No No
60 Z5 ×A4 No No No
60 Z6 ×D10 No No No
60 Z10 × S3 No No No
60 Z5 ×Q12 No No No
60 Z3 ×Q20 No No No
61 Z61 Yes Yes Yes
62 Z62 Yes Yes Yes
62 D62 No No No
63 Λ63[2] Yes Yes Yes
63 Γ63,1 No No No
63 Z3 × F21 No No No

Table 7. The groups of order n with 60 ≤ n ≤ 63.
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