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Abstract: This article studies additive cyclic codes over R = F4 + uF4, where u2 = 0. We obtain generator
polynomials for these codes and provide necessary and sufficient conditions for additive codes to be
self-orthogonal and self-dual codes over R with respect to the symplectic inner product. Additive
self-orthogonal codes over F4 with respect to the symplectic inner product are used to construct
quantum codes. We demonstrate that the Gray image of additive self-orthogonal codes over R results
in additive self-orthogonal codes over F4. Additionally, we prove that binary self-orthogonal codes can
be obtained from additive self-orthogonal codes over R with respect to the symplectic inner product.
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1. Introduction

Linear codes that are invariant under cyclic shifts are known as linear cyclic codes. Cyclic codes
are an important class of error-correcting codes due to their rich algebraic properties, which allow us
easy implementation. Cyclic codes admit efficient encoding and decoding algorithms, making them
particularly useful in various applications. A lot of research has been devoted to linear LCD codes, cyclic
codes, quasi-cyclic codes, and constacyclic codes over range alphabets, including finite fields, rings, and
mixed alphabets (for details see [3, 8, 10, 11, 13, 20] and reference therein).

In 1998, Delsarte [6] was the first to define additive codes, and constructed several schemes using
these codes. Additive codes are generalizations of linear codes in which linearity replaces additivity.
Every linear code is an additive code, but the converse is not true. Additive codes have applications
in combinatorial mathematics, cryptography, and information theory, especially in the construction of
good quantum codes. Calderbank et al. [5] described the structure of additive cyclic codes over F4 and
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established necessary and sufficient conditions for these codes to be self-orthogonal with respect to the
defined symplectic inner product. They presented many new quantum codes derived from additive cyclic
codes over F4. It has been shown that additive codes possess better parameters than linear codes over
finite fields. Shi [17] et al. proved that asymptotically good additive cyclic codes exist using the result
that quasi-twisted codes of fixed index are asymptotically good. Asymptotic properties of ZpZps -additive
cyclic codes and ZprZps -additive cyclic codes were studied in [21, 22]. In 2014, Abualrub et al. [2] studied
the structural properties of Z2Z4-additive cyclic codes. They showed that dual of Z2Z4-additive cyclic
codes are cyclic and provide an infinite family of MDS codes with respect to Singleton bound. Bhaintwal
and Srinivasulu [19] studied additive cyclic codes over the mixed alphabet Z2(Z2 + uZ2) and obtained
minimal spanning set for these codes.

In recent years, several researchers generalized Z2Z4-additive cyclic codes. In 2017, Aydogdu et al.
[4] defined Z2Z2[u]-additive cyclic codes and obtained binary codes with good parameters from these
codes. Diao [7] et al. introduced ZpZp[v]-additive cyclic codes of length (α, β) as R[x]-submodules of
Zp[x]/⟨xα−1⟩×R[x]/⟨xβ−1⟩, where R = Zp+vZp with v2 = v. These mixed alphabets were studied only
in single-variable polynomial rings as alphabet sets. In 2020, Abualrub et al. [1] studied the algebraic
structure of F2F4-additive codes and constructed several optimal binary codes with the help of Grya map.
A code is said to be a Type II code if the Hamming (Lee) weight of each codeword is divisible by 4;
otherwise, Type I. Ling and Solé [14] defined Type II codes over F4 + uF4 and showed that Gray image
of these codes are binary (self-dual) codes of Type II. Reversible cyclic code over F+ uF4 has been done
in [18], authors gave an application of these codes in DNA codes by constructing cyclic DNA codes. In
2023, Shi et al. [16] studied linear self-dual codes over F4 + uF4 of type I. In [15], the authors explored
additive cyclic codes over commutative chain rings by focusing on two types of additivity depending on
the construction of dual codes, namely, Galois-additive (trace duality) and Eisenstein-additive (character
theoretic duality). However, the study of additive cyclic codes over F4 + uF4 has not been done with
respect to the symplectic inner product so far. In this article, we study additive cyclic codes over F4+uF4.
We give a necessary and sufficient condition for the codes to be self-orthogonal and self-dual with respect
to the symplectic inner product. We show that we can construct self-orthogonal codes over F4 and F2

via Gray maps with respect to the symplectic inner product. These codes can be used to construct good
quantum stabilizer codes [12]. Therefore, the study of additive codes over F4 + uF4 is worth it.

The manuscript is organized as follows: In Section 2, we give basic definitions and notations that we
use throughout the article. In Section 3, we obtain generating polynomials of additive cyclic codes over
F4+uF4 and study the self-duality and orthogonality of these codes. In Section 4, we describe the image
of additive cyclic code under defined Gray maps.

2. Preliminaries

Throughout the article, we denote R = F4 + uF4, where u2 = 0 and F4 = {0, 1, w, w = w2 = w + 1}
is the finite field of order 4. A commutative ring with a unique maximal ideal is known as a local ring. A
ring that is both local and principal is called a chain ring. One can easily see that the ring R is a chain
ring with a unique maximal ideal ⟨u⟩. A non-empty additive subgroup of Fn

4 is called an additive code of
length n over F4. If an additive code over F4 is closed under scalar multiplication over F4, then the code
is said to be linear code over F4. Let C be a non-empty subset of Rn, we say C is an additive code of
length n if C is an additive subgroup of Rn. Elements of C are called codewords. Hamming weight of a
vector x = (x0, . . . , xn−1) ∈ Fn

4 is defined as the number of coordinates xi’s non-zero. Hamming distance
of two vectors x, y ∈ Fn

4 is defined as the Hamming weight of x−y. For z = (z0, . . . , zn−1) ∈ Fn
4 , let n0(z)

be the number of zi = 0 and n1(z) be the number of zi = 1, then the Lee weight [9] of z is defined as
wL(z) = n − n0(z) + n1(z). We define Gray maps in Section 4, in the following table, we list the Gray
images and the Lee weight of elements of R.

Define a shift operator S on a given code C of length n as S(c0, c1, . . . , cn−1) = (cn−1, c0, c1, . . . , cn−2)
for all (c0, c1, . . . , cn−1) ∈ C. An additive code is an additive cyclic code if S(C) = C, that is C invariant
under the operator S and C is called additive m-quasi-cyclic code or quasi-cyclic code with index m if C
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Table 1. Gray images and Lee weights of elements of R

x ∈ R wL(x) ρ̃(x) ∈ F2
4 ψ(ρ̃(x)) ∈ F4

2

0 0 (0, 0) (0, 0, 0, 0)

1 2 (0, 1) (0, 1, 0, 1)

w 1 (0, w) (0, 1, 0, 0)

w 1 (0, w) (0, 0, 0, 1)

u 4 (1, 1) (1, 1, 1, 1)

1 + u 2 (1, 0) (1, 0, 1, 0)

w + u 3 (1, w) (1, 0, 1, 1)

w + u 3 (1, w) (1, 1, 1, 0)

uw 2 (w,w) (1, 1, 0, 0)

uw 2 (w,w) (0, 0, 1, 1)

1 + uw 2 (w,w) (1, 0, 0, 1)

1 + uw 2 (w,w) (0, 1, 1, 0)

w + uw 3 (w, 1) (0, 1, 1, 1)

w + uw 1 (w, 0) (0, 0, 1, 0)

w + uw 1 (w, 0) (1, 0, 0, 0)

w + uw 3 (w, 1) (1, 1, 0, 1)

is invariant under the map Sm, where Sm is m the time composition of the map S.

We associate an element (a0, a1, . . . , an−1) ∈ Rn with a polynomial a0+a1x+ · · ·+an−1x
n−1 ∈ R[x].

Then an additive cyclic code C of length n can be seen as F2[x]-submodule of R[x]/⟨xn−1⟩ and an additive
cyclic code of length n over F4 can be seen as F2[x]-submodule of F4[x]/⟨xn − 1⟩.

Definition 2.1. Let f(x) be a polynomial with degree m over F4 then the reciprocal of f(x) is denoted
by f∗(x) and defined as f∗(x) = xmf

(
1
x

)
.

Let X = (a0, a1, . . . , an−1, b0, b1, . . . , bn−1) and Y = (c0, c1, . . . cn−1, d0, d1, . . . , dn−1) be even length
vectors then symplectic inner product is defined as

⟨X,Y ⟩s =
n−1∑
i=0

aidi +

n−1∑
i=0

bici.

We define an inner product equivalent to the symplectic inner product by permutation of coor-
dinates. Let vector X permutated to A = (a0, b0, a1, b1, . . . , an−1, bn−1) and vector Y permutated to
B = (c0, d0, c1, d1, . . . , cn−1, dn−1). We define the symplectic inner product of vectors A and B by pairing
up their components, performing cross multiplication for each pair, and summing over all pairs (vector
length is even, so pairing is well defined), that is

A = (a0, b0, a1, b1, . . . , an−1, bn−1)

B = (c0, d0,︸ ︷︷ ︸
(a0d0 + b0c0)

c1, d1,︸ ︷︷ ︸
+(a1d1 + b1c1)+

. . . , cn−1, dn−1)︸ ︷︷ ︸
+(an−1dn−1 + bn−1cn−1)

[A,B]s =

n−1∑
i=0

(aidi + bici).

Throughout the article, we denote [ , ]s as the above inner product. Define the dual of a code C of length
2n over F4 as C⊥s = {A ∈ F2n

4 : [A,B]s = 0 ∀ B ∈ C}. A code C of length 2n over F4 is said to be
complementary dual code if C ∩ C⊥s = {0}.
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Let v1, v2 ∈ Rn, such that v1 = x + uy and v2 = w + uz for some x, y, w, z ∈ Fn
4 . Define an inner

product over Rn as

[v1, v2]R = [x, z] + [y, w],

where [·, ·] is the usual Euclidean inner product over Fn
4 defined as [x, z] =

∑n−1
i=0 xizi for x =

(x0, . . . , xn−1), z = (z0, . . . , zn−1) ∈ Fn
4 . We denote the dual of a code C with respect to Euclidean

inner product by C⊥E . The dual of a code C over R is defined as C⊥R = {v ∈ Rn : [v, c]R = 0 ∀c ∈ C}.
An additive code C over R is said to be an additive complementary dual (ACD) code if C ∩C⊥R = {0}.
Note that [· , ·]R is a non-degenerated inner product as if [a + ub, c + ud]R = 0 ∀c + ud ∈ Rn then
a+ ub = 0. Therefore |C⊥R | = |Rn|

|C| = 42n

|C| .

3. Additive cyclic codes over F4 + uF4

Let C be an additive code of length n over R, define

C1 ={x ∈ Fn
4 |x+ uy ∈ C for some y ∈ Fn

4},
C2 ={y ∈ Fn

4 |x+ uy ∈ C for some x ∈ Fn
4}.

It is easy to see that C1 and C2 are additive codes of length n over F4 such that C = C1 ⊕ uC2. We say
C1 and C2 are component codes of the additive code C. The cardinality of the code C is the product of
the cardinality of codes C1 and C2. We state this observation in the following proposition.

Proposition 3.1. If C is an additive code over R then C is of the form C = C1 ⊕ uC2, where C1 and
C2 are additive codes over F4. Furthermore, if C1 and C2 have parameters (n, 2k1) and (n, 2k2) then C
has parameters (n, 2k1+k2).

Now, we give the structure of additive cyclic codes of length n over R. First, we state the structure
of additive cyclic codes over F4.

Theorem 3.2. [5]. Let C be an additive (n, 2k) cyclic code over F4. Then C = ⟨ωp(x) + q(x), r(x)⟩
for some p(x), q(x) and r(x) in F2[x] such that p(x) and r(x) divide xn − 1, r(x) divides q(x)x

n−1
p(x) , and

k = 2n− deg p(x)− deg r(x).

Theorem 3.3. Let C1 and C2 be codes of length n over F4. Then the code C = C1 ⊕ uC2 is an
additive cyclic code of length n over R if and only if C1 and C2 are additive cyclic codes of length n
over F4. Moreover, if C1 = ⟨wp(x) + q(x), r(x)⟩ and C2 = ⟨wp′(x) + q′(x), r′(x)⟩, then C = ⟨wp(x) +
q(x), r(x), uwp′(x)+uq′(x), ur′(x)⟩ and vice versa. Also, dimF2

(C) = 4n−(deg p(x)+deg r(x)+deg p′(x)+
deg r′(x)).

Proof. By Proposition 3.1, C is an additive code over R if and only if C1 and C2 are addi-
tive codes over F4. Now, let C be an additive cyclic code over R. For any (c0, c1, . . . , cn−1) ∈ C1

and (d0, d1, . . . , dn−1) ∈ C2, we have (c0 + ud0, c1 + ud1, . . . , cn−1 + udn−1) ∈ C. Consequently,
(cn−1 + udn−1, c0 + ud0, . . . , . . . , cn−2 + udn−2) ∈ C. This implies that (cn−1, c0, . . . , cn−2) ∈ C1 and
(dn−1, d0, . . . , dn−2) ∈ C2. Therefore C1 and C2 are cyclic codes. Conversely, if C1 and C2 are cyclic
codes, then uC2 is a cyclic set and C1 ⊕ uC2 is an cyclic code over R. The rest of the proof follows from
Theorem 3.2.

Remark 3.4. If deg q(x) ≥ deg r(x) then by division algorithm there are h(x), g(x) ∈ F2[x] such that
q(x) = r(x)h(x) + g(x) and deg g(x) < deg r(x). We have

⟨wp(x) + q(x), r(x)⟩ =⟨wp(x) + r(x)h(x) + g(x), r(x)⟩
=⟨wp(x) + g(x), r(x)⟩.

So, we can assume that deg q(x) < deg r(x). Similarly, we can also assume deg q′(x) < deg r′(x).
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Proposition 3.5. If C = C1⊕uC2 is an additive code of length n over R, where C1 and C2 are additive
codes of length n over F4, then C⊥R = C⊥E

2 ⊕ uC⊥E
1 .

Proof. Let a + ub ∈ C⊥E
2 + uC⊥E

1 , that is a ∈ C⊥E
2 and b ∈ C⊥E

1 . For c1 + uc2 ∈ C = C1 + uC2, we
have

[a+ ub, c1 + uc2]R = [a, c2] + [b, c1] = 0.

Thus C⊥E
2 + uC⊥E

1 ⊆ C⊥R . Also, |C⊥R | = 42n

|C| = 42n

|C1|·|C2| = |C⊥E
1 | · |C⊥E

2 | = |C⊥E
2 + uC⊥E

1 |. Hence
C⊥R = C⊥E

2 + uC⊥E
1 .

Corollary 3.6. C = C1 ⊕ uC2 is a dual containing additive code over R if and only if C⊥E
1 ⊆ C2

(equivalently C⊥E
2 ⊆ C1).

Proof. Let C ⊇ C⊥R , that is C1 ⊕ uC2 ⊇ C⊥E
2 ⊕ uC⊥E

1 implies that C1 ⊇ C⊥E
2 and C2 ⊇ C⊥E

1 .

Conversely, let C⊥E
1 ⊆ C2 this implies that C⊥E

2 ⊆ (C⊥E
1 )⊥E = C1. Therefore C⊥E

2 ⊕ uC⊥E
1 ⊆ C1 ⊕

uC2.

Corollary 3.7. C = C1 ⊕ uC2 is self-orthogonal additive code over R if and only if C1 ⊆ C⊥E
2 (equiva-

lently C2 ⊆ C⊥E
1 ).

Example 3.8. Let C = C1 ⊕ uC2 an additive code with parameters (7, 25) over R, where C1 and C2 are
additive codes over F4 with generator matrix

G1 =

1 0 0 0 1 w2 w

0 1 0 w w 0 1

0 0 1 1 w2 1 1


and

G2 =

[
1 0 0 0 1 1 w

0 1 0 0 1 0 w2

]
,

respectively. It is easy to see that C2 ⊆ C⊥E
1 . Hence by Corollary 3.7, C is a self-orthogonal code over R.

Next, we describe the self-orthogonality of additive cyclic codes over R in terms of generator poly-
nomials. By Corollary 3.7, it is sufficient to discuss when C1 ⊆ C⊥E

2 , where C1 and C2 are additive cyclic
codes over F4.

Proposition 3.9. Let C1 = ⟨wp(x)+ q(x), r(x)⟩ and C2 = ⟨wp′(x)+ q′(x), r′(x)⟩ be additive cyclic codes
over Fn

4 . Then C1 ⊆ C⊥E
2 if and only if following holds

(i) [wp(x) + q(x), wp′(x) + q′(x)] = 0,

(ii) p(x)r′(xn−1) ≡ 0 mod (xn − 1) and q(x)r′(xn−1) ≡ 0 mod (xn − 1),

(iii) q′(x)r(xn−1) ≡ 0 mod (xn − 1) and p′(x)r(xn−1) ≡ 0 mod (xn − 1),

(iv) r′(x)r(xn−1) ≡ 0 mod (xn − 1) and r′(xn−1)r(x) ≡ 0 mod (xn − 1).

Proof. We prove (iv), and other proofs follow similarly. Let Cr be a cyclic code generated by r(x). Sup-
pose C1 ⊆ C⊥E

2 , we have [r(x), r′(x)] = 0, that is r′(x) belongs to the Euclidean dual of the cyclic code Cr

generated by r(x). From the theory of cyclic codes (for instance, see book ref), it is well known that C⊥
r is

generated by h∗(x), where h(x) = (xn − 1)/r(x). Thus, r′(x) ∈ C⊥E
r implies that r′(x) =

(
xn−1
r(x)

)∗
k′(x)
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for some k′(x) ∈ F2[x]. Also, (xn − 1)∗ = xn − 1 ∈ F2[x] and r∗(x) = xdrr(xn−1) mod (xn − 1), where
dr is degree of r(x). Consequently, we have r′(x)r(xn−1) ≡ 0 mod (xn − 1).
Conversely, let r′(x)r(xn−1) ≡ 0 mod (xn − 1) then r′(x)xdrr(xn−1) ≡ 0 mod (xn − 1), that is

r′(x)r∗(x) ≡ 0 mod (xn − 1). Thus r′(x) =
(

xn−1
r(x)

)∗
k′′(x) for some k′′(x) ∈ F2[x], that is r′(x) ∈ C⊥E

r .

Consequently, [r′(x), r(x)] = 0. Together with (i), (ii), (iii), we have C1 ⊆ C⊥E
2 .

Corollary 3.10. C = C1 ⊕ uC2 is self-dual additive code over R if and only if C2 = C⊥E
1 .

4. Image of additive cyclic code under Gray map

In this section, we study the image of additive cyclic codes over R under the Gray map. Define a
Gray maps ρ̃ : R→ F2

4 as ρ̃(a+ub) = (b, a+b). Extend the map ρ̃ to ρ : Rn → F2n
4 as ρ(a1+ub1, . . . , an+

ubn) = (ρ̃(a1 + ub1), . . . , ρ̃(an + ubn)) = (b1, a1 + b1, . . . , bn, an + bn). Then ρ is a F2-linear isometry from
(Rn, Lee distance) to (F2n

4 ,Lee distance). The map ρ is equivalent the Gray map defined in [14] denoted
by ϕ.

Remark 4.1. Note that ρ is a bijection. In fact, for any x = (a1, a2, a3, a4 . . . , a2n) ∈ F2n
4 , there is a

v = (v1, v2, . . . , vn) ∈ Rn such that ρ(v) = x, where vi = (a2i − a2i−1) + ua2i−1, 1 ≤ i ≤ n.

Theorem 4.2. Let C be an additive cyclic code of length n over R, then ρ(C) is an additive 2-quasi-cyclic
code of length 2n over F4.

Proof. Let x, y ∈ ρ(C) then there be c, d ∈ C such that ρ(c) = x and ρ(d) = y. Let c = (a0 +
ub0, . . . , an−1 + ubn−1) and d = (a′0 + ub′0, . . . , a

′
n−1 + ub′n−1) then ρ(c) = x = (b0, a0 + b0, b1, a1 +

b1, . . . , bn−1, an−1 + bn−1) and ρ(d) = y = (b′0, a
′
0 + b′0, b

′
1, a

′
1 + b′1, . . . , b

′
n−1, a

′
n−1 + b′n−1). Consequently,

ρ(c+ d) = ρ(c) + ρ(d) = x+ y ∈ ρ(C). Hence ρ(C) is additive code of length 2n over F4.

We have to show S2(ρ(C)) = ρ(C). Let c = (c0, c1, . . . , cn−1) ∈ C then (ρ ◦ S)(c) = ρ(S(c)) =
ρ(cn−1, c0, . . . , cn−2) = (ρ̃(cn−1), ρ̃(c0), . . . , ρ̃(cn−2)) and ρ(c) = (ρ̃(c0), ρ̃(c1), . . . , ρ̃(cn−1)). Since ρ̃(ci)
has length 2, for 0 ≤ i ≤ n − 1, therefore (S2 ◦ ρ)(c) = (ρ ◦ S)(c). Thus S2 ◦ ρ = ρ ◦ S. Also, S(C) = C
implies that ρ(S(C)) = ρ(C). Hence S2(ρ(C)) = (S2 ◦ ρ)(C) = (ρ ◦ S)(C) = ρ(S(C)) = ρ(C).

Lemma 4.3. For any v1, v2 ∈ Rn, [v1, v2]R = [ρ(v1), ρ(v2)]s.

Proof. Let v1 = x + uy and v2 = w + uz for some x, y, w, z ∈ Fn
4 . Let x = (x1, . . . , xn), y =

(y1, . . . , yn), w = (w1, . . . , wn) and z = (z1, . . . , zn) then

[v1, v2]R = [x, z] + [y, w] =

n∑
i=1

(xizi + yiwi).

Also, ρ(v1) = (y1, x1 + y1, . . . , yn, xn + yn) and ρ(v2) = (z1, w1 + z1, . . . , zn, wn + zn), we have

[ρ(v1), ρ(v2)]s =

n∑
i=1

(yi(wi + zi) + zi(xi + yi)) =

n∑
i=1

(xizi + yiwi).

Proposition 4.4. If C is a self-orthogonal code of length n over R, then ρ(C) is a self-orthogonal code
of length 2n over F4.

Lemma 4.5. Let C be an additive code over R. Then ρ(C⊥R) = ρ(C)⊥s .
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Proof. Let x ∈ ρ(C⊥R) then there is a v1 ∈ C⊥R such that ρ(v1) = x. This implies that [v1, v2]R = 0
for all v2 ∈ C. By Lemma 4.3, we have [ρ(v1), ρ(v2)]s = 0 for all v2 ∈ C implies that [x, y]s = 0 for all
y = ρ(v2) ∈ ρ(C). Hence x ∈ ρ(C)⊥s .

Conversely, let y ∈ ρ(C)⊥s . Then [y, x]s = 0 for all x ∈ ρ(C) implies that [y, ρ(v1)]s = 0 for all
v1 ∈ C. By Remark 4.1, there is a v2 ∈ Rn such that ρ(v2) = y. So, [ρ(v2), ρ(v1)]s = 0 for all v1 ∈ C, by
Lemma 4.3, [v2, v1]R = 0 for all v1 ∈ C. Therefore v2 ∈ C⊥R implies that y = ρ(v2) ∈ ρ(C⊥R).

Lemma 4.6. Let C be an additive code over R. Then ρ(C ∩ C⊥R) = ρ(C) ∩ ρ(C⊥R).

Proof. Let ρ(v1) ∈ ρ(C∩C⊥R) for some v1 ∈ C∩C⊥R then ρ(v1) ∈ ρ(C)∩ρ(C⊥R). Hence ρ(C∩C⊥R) ⊆
ρ(C) ∩ ρ(C⊥R). Conversely, let y ∈ ρ(C) ∩ ρ(C⊥R) then there exist v1 ∈ C and v2 ∈ C⊥R such that
ρ(v1) = ρ(v2) = y. Since ρ is a bijection therefore v1 = v2, consequently, v1 ∈ C ∩ C⊥R implies that
y = ρ(v1) ∈ ρ(C∩C⊥R). Hence ρ(C)∩ρ(C⊥R) ⊆ ρ(C∩C⊥R). Therefore ρ(C∩C⊥R) = ρ(C)∩ρ(C⊥R).

Theorem 4.7. An additive code of length n over R is an additive complementary dual code if and only
if ρ(C) is an additive complementary dual code of length 2n over F4.

Any element a ∈ F4 can be written as a = wa1 + wa2 for some a1, a2 ∈ F2. Define another Gray
map [9] ψ : F2n

4 → F4n
2 as ψ(wu + wv) = (u, v) for all u, v ∈ F2n

2 . Then ψ is F2-linear isometry from
(F2n

4 , Lee distance) to (F4n
2 ,Hamming distance).

Proposition 4.8. For x, y ∈ F2n
4 , if [x, y]s = 0 then [ψ(x), ψ(y)]s = 0, where ψ(x), ψ(y) ∈ F4n

2 .

Proof. Let x = (x0, . . . , x2n−1) = (wa0 + wb0, . . . , wa2n−1 + wb2n−1) = wa + wb and y =
(y0, . . . , y2n−1) = (wa′0 + wb′0, . . . , wa

′
2n−1 + wb′2n−1) = wa′ + wb′, where a, b, a′, b′ ∈ F2n

2 . Then

[x, y]s =

n−1∑
i=0

x2iy2i+1 +

n−1∑
i=0

x2i+1y2i

=[z1, z
′
1] + [z2, z

′
2],

where

z1 =(x0, x2, . . . , x2n−2) = wA1 + wB1, z′1 = (y1, y3, . . . , y2n−1) = wA′
1 + wB′

1,

z2 =(x1, x3, . . . , x2n−1) = wA2 + wB2, z′2 = (y0, y2, . . . , y2n−2) = wA′
2 + wB′

2

and

A1 =(a0, a2, . . . , a2n−2) B1 = (b0, b2, . . . , b2n−2)

A2 =(a1, a3, . . . , a2n−1) B2 = (b1, b3, . . . , b2n−1)

A′
1 =(a′1, a

′
3, . . . , a

′
2n−1) B′

1 = (b′1, b
′
3, . . . , b

′
2n−1)

A′
2 =(a′0, a

′
2, . . . , a

′
2n−2) B′

2 = (b′0, b
′
2, . . . , b

′
2n−2).

Now, [z1, z′1] = [wA1 +wB1, wA
′
1 +wB′

1] = w[A1, A
′
1] + [A1, B

′
1] + [B1, A

′
1] +w[B1, B

′
1], since w +w = 1

therefore,

[z1, z
′
1] = w([B1, B

′
1] + [A1, B

′
1] + [B1, A

′
1]) + w([A1, A

′
1] + [A1, B

′
1] + [B1, A

′
1]),

and

[z2, z
′
2] = w([B2, B

′
2] + [A2, B

′
2] + [B2, A

′
2]) + w([A2, A

′
2] + [A2, B

′
2] + [B2, A

′
2]).

If [x, y]s = 0 then [z1, z
′
1] + [z2, z

′
2] = 0, that is, the coefficients of w and w in [z1, z

′
1] + [z2, z

′
2] are 0. So

we have

[B1, B
′
1] + [A1, B

′
1] + [B1, A

′
1] + [B2, B

′
2] + [A2, B

′
2] + [B2, A

′
2] = 0,

[A1, B1] + [A1, B
′
1] + [B1, A

′
1] + [A2, A

′
2] + [A2, B

′
2] + [B2, A

′
2] = 0.
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By adding the above two equations, we have

[A1, A
′
1] + [A2, A

′
2] + [B1, B

′
1] + [B2, B

′
2] = 0. (1)

Also, ψ(x) = (a, b) = (a0, a1, . . . , a2n−1, b0, b1, . . . , b2n−1) and
ψ(y) = (a′, b′) = (a′0, a

′
1, . . . , a

′
2n−1, b

′
0, b

′
1, . . . , b

′
2n−1) are vectors in F4n

2 .

[ψ(x), ψ(y)]s =(a0a
′
1 + a′0a1) + (a2a

′
3 + a′2a3) + · · ·+ (a2n−2a

′
2n−1 + a′2n−2a2n−1)

+ (b0b
′
1 + b′0b1) + (b2b

′
3 + b′2b3) + · · ·+ (b2n−2b

′
2n−1 + b′2n−2b2n−1)

=(a0a
′
1 + a2a

′
3 + · · ·+ a2n−2a

′
2n−1) + (a′0a1 + a′2a3 + · · ·+ a′2n−2a2n−1)

+ (b0b
′
1 + b2b

′
3 + · · ·+ b2n−2b

′
2n−1) + (b′0b1 + b′2b3 + · · ·+ b′2n−2b2n−1)

=[A1, A
′
1] + [A2, A

′
2] + [B1, B

′
1] + [B2, B

′
2].

Therefore, by Equation 1, [ψ(x), ψ(y)]s = 0.

Proposition 4.9. If C is a self-orthogonal code of length 2n over F4, then ψ(C) is a self-orthogonal code
of length 4n over F2.

Define a map χ : Rn → F4n
2 as χ(v) = (ψ ◦ ρ)(v) for all v ∈ Rn. Then χ is a Gray map (F2-

linear isometry) from (Rn,Lee distance) to (F4n
2 ,Hamming distance). We have the following result from

Proposition 4.4 and 4.9.

Theorem 4.10. If C is an additive self-orthogonal code of length n over R, then χ(C) is a binary
self-orthogonal code of length 4n.

5. Conclusion

We have determined the generating polynomials of additive cyclic codes over the chain ring R =
F4 + uF4, u

2 = 0. We have provided necessary and sufficient conditions for the self-orthogonality and
self-duality of these codes with respect to the symplectic inner product. Quantum codes play a crucial
role in enabling reliable quantum computation and communication by correcting quantum errors. There
are two ways to construct binary quantum from classical code. The first one is to find a self-orthogonal
code of length 2n with respect to the symplectic inner product, and the second is to find self-orthogonal
codes of length n over F4 with respect to the trace inner product[5]. In this article, we further showed
that self-orthogonal codes over F4 can be obtained from additive cyclic codes over R with respect to the
symplectic inner product using Gray maps. The following results showed that binary quantum stabilizer
codes can be constructed from symplectic self-orthogonal codes over R.

Theorem 5.1. [12, Corollary 16] Let C be an (n, pn−k) additive code over Fp2 . Then there exists an
[[n, k, d]]p quantum stabilizer code if C is a symplectic self-orthogonal, where d = min{wt(x) : x ∈ C⊥s\C}
if k > 0 and d = min{wt(x) : x ∈ C} if k = 0.

Theorem 5.2. Let C be an additive cyclic code over R with parameters (n, 2k) which satisfies the self-
orthogonality conditions, then there exists an [[2n, 2n − 2k, d]] binary quantum stabilizer code, where
d = min{wt(ρ(x)) : x ∈ C⊥R \ C} if k > 0 and d = min{wt(ρ(x)) : x ∈ C} if k = 0.

It will be interesting to apply the above theorem and construct good quantum codes. Additionally,
one could explore using a general chain ring by defining an appropriate inner product and Gray maps
that lead to symplectic self-orthogonal codes over fields.
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