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Abstract: Explicit construction of linear codes over finite fields is one of the most important and challenging
problems in coding theory. Due to the centrality of this problem, databases of best-known linear
codes (BKLCs) over small finite fields have been available. Recently, new databases for BKLCs over
larger alphabets have been introduced. In this work, a new database of BKLCs over the field GF (19)
is introduced, containing lower and upper bounds on the minimum distances for codes with lengths up
to 150 and dimensions between 3 and 6. Computer searches were conducted on cyclic, constacyclic,
quasi-cyclic, and quasi-twisted codes to establish lower bounds. These searches resulted in many new
linear codes over GF (19).
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1. Introduction

Let [n, k, d]q represent a linear code over the finite field GF (q) with length n, dimension k, and
minimum distance (weight) d. Constructing linear codes with best possible values of the parameters is a
fundamental problem in coding theory [27] It is a discrete optimization problem where given the alphabet
and the values of the other two parameters, we want to find the best value for the third parameter of a
linear code. For instance, we might want to either minimize the block length n for a given dimension k
and minimum distance d, or maximize the minimum distance d for a given block length n and dimension
k. Let dq(n, k) represent the largest value of d for which there exists an [n, k, d]q code over GF (q), and
let nq(k, d) represent the smallest value of n for which there exists an [n, k, d]q code over GF (q). An
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[n, k, d] code is called length-optimal if its block length n is equal to nq(k, d). Similarly, it is called
distance-optimal if its minimum distance d equals dq(n, k).

This optimization problem is very hard to solve. Generally, it is only solved when either k or n−k are
relatively small. Searching for codes with the best parameters, even with the help of modern computers,
is computationally taxing. There are two main reasons for this. First, computing the minimum distance
of an arbitrary linear code is NP-hard [28], and it becomes infeasible for large dimensions. Second, for
a given length, dimension, and finite field GF (q), the number of linear codes is very large. Due to these
inherent difficulties, researchers often focus on special types of linear codes that are known to contain
good codes, and at the same time possess rich mathematical structures. Cyclic codes and their various
generalizations play an important role in this regard. Certain generalizations of cyclic codes such as quasi-
cyclic (QC) and quasi-twisted (QT) codes are known to contain many linear codes with good parameters.
In fact, many record-breaking QC and QT codes have been obtained with the help of computer search
algorithms. For a sample of publications that present new linear codes from the classes of QC and QT
codes, see [1–3, 9, 19, 20, 22, 23].

The online database [21] is well known in the coding theory research community for the best-known
linear codes (BKLC) over small fields. MAGMA software also has a similar database included [8]. The
best-known QC and QT codes are stored in the online database of QT codes [11]. As new codes are
discovered, these databases are updated. The two databases in [21] and [8] store codes over finite fields
having sizes up to 9. Similarly, a smaller database of codes over GF (11) and GF (13) are given in [12] and
[13]. More recently, codes over GF (17) have been studied, and a new database of codes over GF (17) has
been created in [14]. A construction of sector-disk codes and MDS codes over GF (17) for correcting sector
erasure errors is given in [15]. Computer searches on QT codes over GF (17) and GF (19) are conducted
in [24], and codes with dimensions up to 5 are presented. Additionally, some results on self-dual codes
over GF (19) can be found in [7, 16], and [26]. The main goal of this paper is to introduce a new database
of BKLCs over GF (19) with lower and upper bounds on minimum distances.

2. Quasi-Twisted codes

Quasi-twisted (QT) codes are generalization of cyclic, constacyclic and quasi-cyclic codes. A
linear code is called constacyclic if whenever a codeword (a0, a1, ..., an−1) is in the code, so is
(αan−1, a0, ..., an−2), where α is a non-zero element in the field GF (q) and is called the shift constant.
The special case of α = −1 is known as negacyclic codes which were defined in [6]. Therefore, a QT code
with p = 1 and α = 1 is a cyclic code; a QT code with p = 1 is a constacyclic code; a QT code with
α = 1 is a QC code. The block length n of a QT code can be written n = m · p.

Given a generator polynomial c(x) = c0 + c1x + · · · + cn−1x
n−1 of a constacyclic code with shift

constant a, it has a generator matrix of the following a-circulant form:

G =


c0 c1 c2 · · · cn−1

acn−1 c0 c1 · · · cn−2

acn−2 acn−1 c0 · · · cn−3

...
...

...
...

acn−k+1 acn−k+2 acn−k+3 · · · cn−k


As a generalization of constacyclic codes, a generator matrix of a QT code consists of blocks of

constacyclic matrices. In general, a generator matrix of an p-QT code has the following form

G =


G11 G12 · · · G1p

G21 G22 · · · G2p

...
...

...
Gr1 Gr2 · · · Grp


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where each Gij is an a-circulant matrix corresponding to a constacyclic code. Such a code is called an
r-generator QT code. The special case [G1 G2 ... Gp] gives rise to 1-generator QT codes.

3. Computer search algorithms and best-known QT codes over
GF (19)

We found many good QT codes using the generalized version of the ASR search algorithm [4], which
is based on the notion of code equivalence.

Definition 3.1. Two linear codes are equivalent if one code can be obtained from the other by any
combination of the following transformations:

1. A permutation of the coordinates.

2. Multiplying the elements in a fixed position by a non-zero scalar in GF(q).

3. Applying an automorphism of GF(q) to each component of the vectors.

The algorithm given in [4] partitions constacyclic codes of a given length into equivalence classes and
then selects one code from each class. This algorithm is faster and more efficient than the command in
MAGMA to test for the equivalence of linear codes. For more details on the performance and implemen-
tation of this algorithm, see [4]. After producing constacyclic codes quickly from this algorithm, we can
proceed to implement the ASR algorithm to search for QT codes.

In the ASR search algorithm, the first step is to take a generator g(x), g(x) | xm−a, of a constacyclic
code of length m from each equivalence class. Next, we construct a QT code of index p from a generator
in the form

(f1(x)g(x), f2(x)g(x), ..., fp(x)g(x)),

where all fi(x)’s are randomly chosen from Fq[x]/⟨xm−a⟩ with the condition that they are relatively prime
to the check polynomial h(x) of the constacyclic code generated by g(x), and deg(fi(x)) < deg(h(x)).
The ASR algorithm is based on the following theorem.

Theorem 3.2. [2] Let C be a 1-generator, p-QT code over Fq of length n = mp with a generator G(x)
of the form:

G(x) = (f1(x)g(x), f2(x)g(x), ..., fp(x)g(x)) ,

where xm − a = g(x)h(x) and for all i = 1..., p, gcd(h(x), fi(x)) = 1. Then, C is an [n, k, d′]q-code where
k = m−deg(g(x)), and d′ ≥ p ·d, d being the the minimum distance of the constacyclic code Cg of length
m generated by g(x).

Another algorithm for finding good QT codes is the iterative heuristic search algorithm, presented
in [10]. It is based on the weight matrix as defined in [22]. However, for a code with large parameters
k and p over large field, the weight matrix becomes too big to complete the search within a reasonable
time or even fit in memory. Therefore, for these cases, we apply a randomized algorithm by choosing up
to 500 defining polynomials randomly, to reduce the search space and run time complexity. For small
finite fields, a larger number of random polynomials can be used, due to the smaller number of rows in
the weight matrix.

With the algorithms mentioned above, a lot of good QT codes have been found. Table 1 presents the
QT [pk, k] codes of dimensions 3, 4, 5 and 6 for p = 2, 3, . . . , 25 over GF (19). The superscript e indicates
the codes that improve best-known results, and the superscript o indicates optimal codes.
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Table 1: Best-known QT [pk, k] codes of dimensions 3, 4, 5 and 6

p\k 3 4 5 6
2 4o 5o 6o 7o

3 7o 9o 11o 13o

4 10o 13o 15 18
5 13o 17 19 22
6 16o 20o 24e 28
7 18o 24oe 28 33
8 21o 27 33e 38
9 24o 31e 37 44
10 27o 34 42e 49
11 29 38 46 54
12 32 42e 51e 60
13 35 45 55 65
14 38o 49 60e 71
15 41o 53e 65e 76
16 44oe 56 69e 81
17 47oe 60 73 87
18 49 64e 78e 92
19 52 68e 82 98
20 55o 72e 88e 104
21 58oe 75e 92e 109
22 61oe 79e 96 114
23 63 82 100 120
24 66 86 106e 125
25 69 90e 109 131

Table 2 below lists new improved QT [pk, k] codes over GF (19), obtained with the algorithms
mentioned above. The defining polynomials are represented by the sequences of their coefficients, with
the lowest coefficients on the left. The elements of the sequence are denoted by 0 to 9 and A to I,
there A represents 10, B represents 11 and so on. As an example, 3AEA corresponds to the polynomial
3 + 10x+ 14x2 + 10x3.

Table 3 presents the new QT [pk, k] codes with k = 6, and Table 4 lists the QT codes used to get
the lower minimum distance bounds given in Table 5.

4. Lower and upper bounds on minimum distances of linear codes
over GF (19)

4.1. Lower bounds on minimum distance

Lower bounds on minimum distances of linear codes are usually established by explicit constructions.
Implementing the search algorithms described in the previous section, we have been able to construct
many QT codes with good parameters. In the previous section, we presented tables of new codes that
are explicitly constructed, so they establish the lower bounds on the minimum distances.

4.2. Upper bounds on minimum distance

Upper bounds on minimum distances are obtained by applying the standard bounds (such as Gries-
mer, Elias, Sphere Packing, and others [27]) and taking the best result for each parameter set. This is
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Table 2: New QT [pk, k] codes with improvements

[n, k, d] code α Defining polynomials
[48, 3, 44] 1 521, 821, 391, 6G1, H41, 8B1, 7A1, H1, 371, 941, 921, G1, A1, 321, 831, E31
[51, 3, 47] 1 521, 821, 391, 6G1, H41, 8B1, 7A1, H1, 371, 941, 921, G1, A1, 321, 831, E31
[63, 3, 58] 1 E21, 11, C11, 91, 371, IB1, H81, 541, 741, 61, E11, 351, G51, H41, H1, 911, EC1, D1, 761,

B41, B21
[66, 3, 61] 1 731, 51, 821, F21, EC1, B11, F71, 31, IA1, 81, 721, G1, FA1, 941, 621, 311, 741, 411, 6E1,

B41, 11, B21
[28, 4, 24] 1 I71, 2811, 5B11, 9831, 7E31, G741, 6451
[36, 4, 31] 1 221, A81, D91, BC1, 1I1, G321, BG21, C131, H481
[48, 4, 42] 1 151, IH1, 7I1, G511, 7421, DI21, I531, 6831, F451, 6E61, F781, 6E81
[60, 4, 53] 1 121, C41, C81, I111, 5811, C321, F621, CE21, DF21, HF31, G251, 3851, E861, I191, E6A1
[72, 4, 64] 1 GE1, B611, FC11, BF11, E721, H721, IC21, CI21, CE31, B541, 4B41, 9261, 2I71, 7481, 2981,

E191, E591, 7E91
[76, 4, 68] 1 FD1, C711, 4121, EC21, 7141, B741, CF41, 4H41, 7851, 9I51, F861, G961, EA61, IA61,

B171, 6871, 95A1, IAB1, IDB1
[80, 4, 72] 2 976B, 2581, A41, 3E9, G2F, IH7C, 47IH, AF8B, 8E71, 48C, E468, IIBC, 3AAF, F971, B4G,

FBIE, 8GA9, 7598, FA11, FGI
[84, 4, 75] 1 741, A71, DB1, I611, 8C11, 8721, 4821, BD21, 5F21, 8F21, 4G21, 5341, CF41, F451, GB51,

CH51, I161, 9A61, H871, E481, 68F1
[88, 4, 79] 1 41, 331, 761, 2B1, 5B1, 3111, 9411, D411, G611, 2I11, 3I11, FC21, 2431, 2C31, CI31, B241,

2H41, 6H41, E571, 3H71, E5B1, 87C1
[100, 4, 90] 2 976B, 2581, A41, 3E9, G2F, 9487, BCEC, C991, DIA, 0G5, IBEI, DH3D, 3DA1, GD, GI1,

2D93, BF8B, 7A2B, 96A1, 3FH, DG6H, GFF9, 5H6G, EIC1, 94I1
[30, 5, 24] 1 1DB, BD1, A3021, C83C, 339C2, BFF61
[40, 5, 33] 1 1DB, BD1, IIFC, 9B41, B3F71, BFDH, F3612, EIHF1
[50, 5, 42] 1 2F73, E931, E8H81, A8FF, 9G7G1, 22I8, ICH95, D1FC1, HE7H3, 8GIF1
[60, 5, 51] 1 15ID, 3AEA, AEA3, DI51, 91981, 90B8, H39I, D5HC, 34AC1, A8EB6, H4261, 289B
[70, 5, 60] 1 58EA2, HID91, F2651, 3GIA1, 2AA91, GDBA1, 8DA42, EIDA1, DBI61, G7BF, 3HD63,

51E21, 84231, E5F3
[75, 5, 65] 1 28H18, CDFE1, AH54, FIG21, 3E961, 6EGG, 2D4CD, D3DE1, 8I1H, B1GB7, 78FE2,

HEHG1, BA659, GB491, 4G6E1
[80, 5, 69] 1 IH223, 464HB, 0E351, 6D5I, I9B84, 57GH5, FH3E1, BCEC1, 4601G, I47E3, 1F911, I93G,

A7E4C, I339E, ICF11, 6D72
[90, 5, 78] 1 20704, D41D1, I833, A3E8H, 885B1, DECD, 35HG3, FIIB1, D192, I9EG6, 6I8B1, 155E,

85HG4, ID5C2, 2A4E1, 2DEF8, 51611,2D2G
[100, 5, 88] 1 G74E3, H5EGB, I52I1, IFEG, 2226A, G5A46, F44H1, 32II, 79807, 2AII2, CBDD1, D71A,

FEC17, 674HF, 77961, D14C, C6B6I, 91122, 01851, H43A
[105, 5, 92] 1 52F4A, 79F41, 85BB1, 4AD59, DC3C1, 516A, I9EG6, 6I8B1, 155E, 85HG4, ID5C2, 2A4E1,

34FD6, 73831, 3BCE1, 2DEF8, 51611, 2D2G, 9B2AH, 98571, F267
[120, 5, 106] 1 DID17, 85FI6, 2EF11, 2651, B699G, 8H7I1, H465, AA93, I9B84, 57GH5, FH3E1, BCEC1,

BF0G1, CAE07, DF1D1, 36E1, E0HGH, F44E8, 723D1, 452F, 6A9I1, 32GI5, HEID1, BI2D

similar to the case of previously introduced databases over GF (11), GF (13) and GF (19) ([12], [13],[14]).

4.3. Linear codes with dimension 3

It is well known that there are connections between BKLCs and projective geometry. An (n, r)-arc
in PG(k − 1, q) is a set of n points K with the property that every hyperplane is incident with at most
r points of K and there is some hyperplane incident with exactly r points of K. A linear code is called
projective if any two of its coordinates are linearly independent, or equivalently if the minimum distance
of its dual code is at least three. It is well known that existence of a projective [n, 3, d]q code is equivalent
to the existence an (n, n− d)-arc in PG(2, q). A Griesmer code is a code that meets the Griesmer bound
(Theorem 24, [27]). Every [n, k, d]q Griesmer code with d ≤ qk−1 is projective ([25], [17], [18]). An online
table of bounds on the sizes of (n, r)-arcs in PG(2, q) is maintained in [5]. This allows us to obtain bounds
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Table 3: New QT [6p, 6] codes over GF (19)

[n, k, d] code α Defining polynomials
[12, 6, 7] 1 1, FB6211
[18, 6, 12] 1 BC3D31, 2B7C1, 87I711
[24, 6, 18] 2 IB2D95, 3ADFA, FH6E3B, HGA999
[30, 6, 22] 1 1, HEFG11, 3H271, B9F111, I57A91
[36, 6, 28] 1 ADCF75, F20601, I9EH4, HF973A, CHFF11, C1028
[42, 6, 33] 2 IB2D95, H80AEC, E17F1G, 9307H3, GABF61, 2FE7EA, 4CEADA
[48, 6, 38] 18 8DI74H, 96IA1A, 26DHAG, 31BD7, EF7DIC, 71H6F2, 7479C6, EE9H02
[54, 6, 44] 1 I4473C, C14EG1, DA57D, EG2745, A8C981, F707, 4FI941, GC8IF1, 0HE5F
[60, 6, 49] 8 F3C748, F0HF2F, GB834, 7253C1, B91B2, 8I3984, 6D68EE, C7DB1G, 22D621, 34BEE
[66, 6, 54] 1 I6B911, 83361, 3H271, G3G711, E2C161, F4A351, E86C91, 26B731, ID6851, 8IGH41,

387A71
[72, 6, 60] 1 7I971, 4946, BC1I, B5619G, BGFAE1, FECFB, 275G8G, DC4F91, G32C11, 4FI941, GC8IF1,

0HE5F
[78, 6, 65] 2 IB2D95, 3ADFA, FH6E3B, CGF9GI, H457A3, I0GI6, 70H4F, 6C96A5, 650BHD, 82IAG5,

I9101G, HB13CD, 85GIGF
[84, 6, 71] 2 DCBHEB, CE02C4, 0HHG28, 71FEH, 33I26C, F029H, 0ADF9B, 10IBH4, DB003H, 7G02B1,

6GAD43, 521996, 59B2HE, C8BB2G
[90, 6, 76] 18 GCC61, D0AH82, D3G855, 580168, B8DA7F, F36IAD, 72DH24, 185FH2, 83228C, D78E33,

3H97GA, 5G6513, 07D03D, 00I33, 70D73B
[96, 6, 81] 18 7FA8I3, 841EGB, B6B3HA, 52D6F9, G1E73B, 17DACB, EA0597, EE6BG6, 407EGF,

5IE4B1, 81G2B, 1EGE3D, 8F7754, H5I705, 2D1BH9, DA2F6D
[102, 6, 87] 2 IB2D95, 3ADFA, FH6E3B, CGF9GI, H457A3, I0GI6, 70H4F, 6C96A5, 650BHD, 82IAG5,

I9101G, HB13CD, C772GD, 1GH6DB, BGH42F, 57G31I, G4B59G
[108, 6, 92] 1 243FGD, B9H628, 0289IG, 1BDABE, 0DF8DB, 0DFEI, 9F575D, C16826, 65093C, HAFG1B,

E91H46, 147DDD, G98C2B, C15678, 8GD06F, 5186A, 43FB3D, 8G402
[114, 6, 98] 2 IB2D95, DD44F8, 7HAA88, 03BH26, G5F5A2, BAA173, GIAB63, AC1HHG, 70H9B7,

6D952F, 091HG3, 57B0AC, E29143, 13G967, 8856F7, A87AD1, 18075C, ACD0GF, A2248D
[120, 6, 104] 8 979F8A, 53465C, 2I44D2, 84H6B1, 37B3I1, 121H6E, E31543, 1I5865, 941E71, 888GG, 19G6I,

HFA25B, 58EF3C, BD4991, A6I55, 707D0B, F95CF3, H1F5H9, EI5F11, 3D87B
[126, 6, 109] 2 78E61B, 11GFC1, DG6C6, 3DG0D, 9A98A, I7HGA, 9D15E, G4E45C, HAAD86, 8E4E7G,

DCG266, 2CE79B, 1H2B51, 6DHE5, D69EBF, 95E97H, 7BFCCH, B34E6E, 265H61, 8FB8G,
H1ICG

[132, 6, 114] 2 IB2D95, 3ADFA, FH6E3B, CGF9GI, H457A3, I0GI6, 70H4F, 6C96A5, 650BHD, 82IAG5,
I9101G, HB13CD, C772GD, 1GH6DB, BGH42F, 57G31I, H5IC11, CFI3A1, 386EIC, 071G97,
36AA54, 412E7

[138, 6, 120] 2 IB2D95, 3ADFA, FH6E3B, CGF9GI, H457A3, I0GI6, 70H4F, 6C96A5, 650BHD, 82IAG5,
I9101G, HB13CD, C772GD, 1GH6DB, BGH42F, 57G31I, H5IC11, CFI3A1, 386EIC, 071G97,
36AA54, 7G2I72, 6AHI21

[144, 6, 125] 1 I4473C, C14EG1, DA57D, EG2745, A8C981, F707, 4FI941, GC8IF1, 0HE5F, 7I971, 4946,
BC1I, I77956, AE5H51, E2BFA, C9B78D, G95CH1, 18GF1, 6DDGIE, FG69E1, IFA7A1,
308CG1, 8GF4F1, HD2FC

[150, 6, 131] 8 F3C748, F0HF2F, GB834, 7253C1, B91B2, 8I3984, 6D68EE, C7DB1G, 22D621, 34BEE,
7HC29, 8B177, 10I52, 5C928, 9BHC1, 4HB6E8, EH82C6, 211994, BA9I31, 0GEAC, 27F6E1,
EHG41D, 2F4H21, 8H8CD1, I6E441

on linear codes of dimension 3 from the bounds on the sizes of (n, r)-arcs in PG(2, q), and by the method
of puncturing. It turns out that most of the QC or QT codes of dimension 3 presented in this work meet
the bounds, hence they are optimal.

Table 5 below summarizes all of the results that we have obtained. For each length n (n ≤ 150) and
dimension k (3 ≤ k ≤ 6), it presents the lower bound and the upper bound for an [n, k] code over GF (19).
If the minimum distance of the BKLC for that length and dimension meets the theoretical upper bound
with equality, an optimal code is known and there is a single number for that entry (e.g., there is a single
number d = 18, for n = 20, k = 3). If there is a gap between these two numbers then they are listed for
that entry. For example, we have 18− 19, for n = 22, k = 4. This means that for a linear code of length
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Table 4: New QT codes used to get the lower minimum distance bounds

n k d m α Defining polynomials
50 4 44 10 18 13CD3DC31, EEAG15631, 6AHDH67411, 4D7I412G11, D6BI135B21
63 4 56 9 1 6G1G0A41, HBI34EA1, C867ID11, CBE252D51, 97CGD7711, 7A7763C11, G4I79A231
96 4 87 24 1 C4H7E0ECE701GCH051E41, H5A492ICB92ABF3AD8A8251, C8548I94DBA8ACI539DGAH1,

42122C69DD71H8GE68F1431
120 4 110 20 2 3GIB2CF0F24F24E651, 6D75E887G83DAGA26D1, HDA9644B25IC6F9H411,

DI16AD81C6FI0E4H741, 55EAA3DHG58D7E612711, 3CA6E96C97C2E3985121
126 4 115 18 1 E6F3G217B98122BB1, AD11AE3B7F84GHFF1, C3FBI671555E7D1I1, 9DE04FI420528A421,

53B4EDH98E3082031, 478F25744FF7A6B31,B1H4F26C914HDAH81
144 4 132 18 1 GABH3A343HAE98HC1, 7I1DD1C2H9DEE50G1, 4416G72C83I5CC4H1, 366B7DE6DFDH91411,

H37GA18HB4159AI71, 95E253824427IBG411, GD5EGG5H38F1I64711, 8581I44EI8I5A45A11
152 4 139 19 1 AEECAAE54DFC6IC9B1, 9A4BDB6IA2E979GAB1, 71IIIGAHG5126BFGC1,

GC8546C42714H31CI1, G9FD1FFI366186C521, DA332B38I62H5F1C211,
BH5I46A268D7E1BB611, 91AC2D228FICBA47E11

19 5 15 19 1 15FGDC171CDGF51
30 5 24 10 1 1BDDB1, AC38032C1, 3B3F9FC621
40 5 33 10 1 1BDDB1, I9IBF4C1, BB3FFD7H1, FE3I6H1F21
50 5 42 10 1 2EF97331, EA88HF8F1, 92G27IG81, IDC1HF9C51, H8EG7IHF31
60 5 51 20 1 13AD5AEIIEA5DA31, 99HD10359B9H88IC1, 3AH24848AE29CB6B161
76 5 66 19 1 7741027E2637CBFF1, C4B3IA159B1IH27121, 2DDDH3I73DIBGC9AB1, B514655GG81AIECD511
80 5 69 20 1 I406H6ED24352H5I3B1, I5FB97HCBG3E8HEC4511, 4I1I64F907931E1GG31,

AII673CDE3F74912CE1
100 5 88 20 1 GHII755F4E2EEGIG3B1, 2GF325422A4I64HIA61, 72CD9AB78ID10IDA721,

F67DE771C4941H6C7F1, C90H6114B183625AI21
114 5 101 19 1 15FGDC171CDGF51, HCD2A3FF2572E2C6E1, 71H8H68D654BAI99111,

8HC4C6259GHB5E46211, CBCE0D4358D5A07961, GH36E95A7BCDBGD071
120 5 106 20 1 D822I5E6DFF51I11761, B8HA6H4A97699I53G1, I5FB97HCBG3E8HEC4511,

BCD3FAF60E1EG0D1171, EF740425H432GEDFH81, 63HBA2EI9GI2IIDD151
133 5 118 19 1 EFCC11DHA6HF82171, 2E7B1B19ID06331D01, B6658C69D292H68GF1, 7H11G259C71F8A83A1,

3184BHEH776GF47E01, E8AC9I239B315I83F21, AE81F9C9H99G4HHH51
63 6 52 21 2 4254351F4BE81DE1, 8A9DBG5E41F86ICB8I421, 2EACE8B5434D0BCE6B41
98 6 84 49 1 E4HAF1275B27CDED6CF4F18HGDC5A9729GA712BGBB4HG4111,

DC5ED5B2109HA4FAIF585I7EE2F306H9A365529AF94G1601
105 6 90 21 2 8A9DBG5E41F86ICB8I421, 2EACE8B5434D0BCE6B41, 8DD16C27D78ABD5IA6C1,

DIIA999ABF4595127E61, CCAIGE18372C2DH6H5511
147 6 129 49 1 7G797F7E1GA2EDH66B979859FH4FC83AE8CE12279141E01, DICA1GDA64GEI92H348A712824

43975A4A30B8DAH33FH2G1, DC179GD20F5D8C15FFFD932CH42160DHGB0AC02G63371D31

22 and dimension 4 over GF (19), the theoretical upper bound on the minimum distance is 19 whereas
the actual minimum distance of a BKLC of this length and dimension is 18.

The following denotes the indexes used in Table 5:

Ba – Simeon Ball [21]

Be – Maximum distance separable code for n < 21 [17]

New – new codes presented in this paper

Gu – quasi-twisted code [25]

Unmarked entries can be obtained by puncturing and extending techniques

Table 5: Lower and upper bounds on minimum distances of linear codes over GF (19)

n k = 3 k = 4 k = 5 k = 6 n k = 3 k = 4 k = 5 k = 6
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76 70-71 68-69 66-69 New 63-68
77 71-72 69-70 66-69 64-69

3 1 78 72 70-71 66-70 65-69
4 2 1 79 73 71-72 67-71 66-70
5 3 2 1 80 74 72-73 New 69-72 New 67-71
6 4 3 2 1 81 75 72-74 69-73 68-72
7 5 4 3 2 82 76 73-75 70-74 69-73
8 6 5 4 3 83 77 74-76 71-75 70-74
9 7 6 5 4 84 78 75-77 72-76 71-75 New

10 8 7 6 5 85 79 76-78 73-77 71-76
11 9 8 7 6 86 80 77-79 74-78 72-77
12 10 9 8 7 87 81 Ba 78-80 75-79 73-78
13 11 10 9 8 88 81-82 79-81 76-80 74-78
14 12 11 10 9 89 82-83 80-82 77-81 75-79
15 13 12 11 10 90 83-84 81-83 78-82 76-80
16 14 13 12 11 91 84-85 82-84 79-83 77-81
17 15 14 13 12 92 85-86 83-85 80-84 78-82
18 16 15 14 13 93 86-87 84-86 81-85 79-83
19 17 16 15 14 94 87-88 85-87 82-86 80-84
20 18 Be 17 Be 16 Be 15 Be 95 88-89 86-87 83-87 81-85
21 18 17-18 16-17 15-16 96 89-90 87-88 New 84-87 82-86
22 19 18-19 16-18 16-17 97 90 87-89 85-88 83-87
23 20 19 17-19 17-18 98 91 88-90 86-89 84-88 New

24 21 20 18-19 18-19
New

99 92 89-91 87-90 84-89

25 22 21 19-20 18-19 100 93 90-92 88-91 New 85-90
26 23 22 20-21 18-20 101 94 91-93 88-92 86-91
27 24 23 21-22 19-21 102 95 92-94 89-93 87-92
28 25 24 New 22-23 20-22 103 96 93-95 90-94 88-93
29 26 24-25 23-24 21-23 104 97 94-96 91-95 89-94
30 27 25-26 24-25

New
22-24 105 98 Ba 95-97 92-96 90-95 New

31 28 Ba 26-27 24-26 23-25 106 98-99 96-98 93-97 90-96
32 28-29 27-28 25-27 24-26 107 99-100 97-99 94-98 91-97
33 29-30 28-29 26-28 25-27 108 100-101 98-100 95-99 92-98
34 30-31 29-30 27-29 26-28 109 101-102 99-101 96-100 93-99
35 31-32 30-31 28-30 27-29 110 102-103 100-102 97-101 94-100
36 32-33 31-32

New
29-31 28-30

New
111 103-104 101-103 98-102 95-101

37 33-34 31-33 30-32 28-31 112 104-105 102-104 99-103 96-102
38 34-35 32-34 31-33 29-32 113 105-106 103-105 100-104 97-103
39 35-36 33-35 32-34 30-33 114 106-107 104-106 101-105

New
98-104

40 36 34-36 33-35
New

31-34 115 107-108 105-106 101-106 99-105

41 37 35-37 33-36 32-35 116 108 106-107 102-106 100-106
42 38 36-37 34-37 33-36

New
117 109 107-108 103-107 101-106

43 39 37-38 35-37 33-37 118 110 108-109 104-108 102-107
44 40 38-39 36-38 34-38 119 111 109-110 105-109 103-108
45 41 39-40 37-39 35-38 120 112 110-111

New
106-110
New

104-109
New

46 42 40-41 38-40 36-39 121 113 110-112 106-111 104-110
47 43 41-42 39-41 37-40 122 114 111-113 107-112 105-111
48 44 42-43 40-42 38-41 123 115 112-114 108-113 106-112
49 45 43-44 41-43 39-42 124 116 113-115 109-114 107-113
50 46 44-45

New
42-44
New

40-43 125 117 114-116 110-115 108-114

51 47 44-46 42-45 41-44 126 118 Ba 115-117
New

111-116 109-115
New

52 48 Ba 45-47 43-46 42-45 127 118-119 115-118 112-117 109-116
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53 48-49 46-48 44-47 43-46 128 119-120 116-119 113-118 110-117
54 49-50 47-49 45-48 44-47

New
129 120-121 117-120 114-119 111-118

55 50-51 48-50 46-49 44-48 130 121-122 118-121 115-120 112-119
56 51-52 49-51 47-50 45-49 131 122-123 119-122 116-121 113-120
57 52-53 50-52 48-51 46-50 132 123

-124
120-123 117-122 114-121

58 53-54 51-53 49-52 47-51 133 124-125 121-124 118-123
New

115-122

59 54 52-53 50-53 48-52 134 125-126 122-125 118-123 116-123
60 55 53-54 51-53

New
49-53 135 126 123-125 119-124 117-123

61 56 54-55 51-54 50-53 136 127 124-126 120-125 118-124
62 57 55-56 52-55 51-54 137 128 125-127 121-126 119-125
63 58 55-57 53-56 52-55

New
138 129 126-128 122-127 120-126

64 59 56-57
New

54-57 52-56 139 130 127-129 123-128 121-127

65 60 57-59 55-58 53-57 140 131 128-130 124-129 122-128
66 61 58-60 56-59 54-58 141 132 129-131 125-130 123-129
67 62 59-61 57-60 55-59 142 133 130-132 126-131 124-130
68 63 Ba 60-62 58-61

New
56-60 143 134 131-133 127-132 125-131

69 63-64 61-63 59-62 57-61 144 135 132-134
New

128-133 126-132

70 64-65 62-64 60-63 58-62 145 136 132-135 129-134 127-133
71 65-66 63-65 61-64 59-63 146 137 133-136 130-135 128-134
72 66-67 64-66 62-65 60-64

New
147 138 Ba 134-137 131-136 129-135

New

73 67-68 65-67 63-66 60-65 148 138-139 135-138 132-137 129-136
74 68-69 66-68 64-67 61-66 149 139-140 136-139 133-138 130-137
75 69-70 67-69 65-68 62-67 150 140-141 137-140

New
134-138
New

131-138
New

5. Conclusion and future directions

This work introduces a partial database of BKLCs over the finite field GF (19). The database covers
codes for lengths up to 150 and dimensions up to 6. For these small dimensions, we searched for codes
with good parameters among the class of QT codes, which includes cyclic, constacyclic, and QC codes
special cases. This search was quite effective. As the code dimension gets larger, the search for good
codes becomes computationally taxing. Although the class of QT codes remains promising, it is necessary
to employ other types of codes as well. Moreover, other search methods and approaches are needed to
address the challenging problem of finding codes with better parameters in higher dimensions. While
there is no limit to the variety of methods that can be used to make progress, some possibilities include
heuristic search algorithms, genetic search algorithms, and making use of AI. Finding codes with best
possible parameters is one of the major problems of coding theory with many open cases, and it invites
ingenuity and creativity of researchers to come up with new approaches. No single method will solve all
open cases of the problem.

Acknowledgment: We thank the anonymous reviewers for their comments that helped improve
the paper.
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