New Results and Bounds on Codes over GF(19)
Abstract
Explicit construction of linear codes over finite fields is one of the most important and challenging problems in coding theory. Due to the centrality of this problem, databases of best-known linear codes (BKLCs) over small finite fields have been available. Recently, new databases for BKLCs over larger alphabets have been introduced. In this work, a new database of BKLCs over the field GF(19) is introduced, containing lower and upper bounds on the minimum distances for codes with lengths up to 150 and dimensions between 3 and 6. Computer searches were conducted on cyclic, constacyclic, quasi-cyclic, and quasi-twisted codes to establish lower bounds. These searches resulted in many new linear codes over GF(19).